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(I) Main facts on sources – Shannon weights



Source on an alphabet Σ

This is a probabilistic mechanism

which emits at each time n ≥ 1 a symbol αn ∈ Σ

possibly correlated with the previous emitted symbols α1, . . . , αn−1.

A source produces infinite words α = (α1, . . . , αn, . . .) with a distribution µ

⇒ Any general source is a probabilistic space (ΣN, µ).

Two other points of view

(1) An infinite word α = (α1, α2, . . . , αn, . . .) is written as (σ(α), T (α))

σ(α) = α1 = the first symbol, T (α) = the infinite suffix (α2, α3, . . .),

The pair (σ, T ) gives a recursive definition of the source

(2) The space ΣN gives rise to a family of spaces (Σk)k≥0.

Each Σk deals with the prefixes w of length k,

their cylinders ⟨w⟩ = {α ∈ ΣN | α begins with the finite prefix w ∈ Σ⋆]

and their probabilities µ⟨w⟩
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Shannon entropy and Shannon weights

The Shannon entropy of a source (when it is well defined....)

is the average amount of information brought by one symbol

On each space Σk, each prefix w is emitted with probability µ⟨w⟩ and
the amount of information brought by the prefix w equals | logµ⟨w⟩|

The Shannon weight mµ(k) is the average amount of information

brought by a prefix of length k: mµ(k) =
∑
w∈Σk

µ⟨w⟩ | logµ⟨w⟩|

▶ For a source S of entropy h > 0, then mµ(k) ∼ h · k.
▶ For h = 0, then mµ(k) = o(k) as k → ∞. But with which speed ?

The Shannon weights classify the sources of zero entropy.

Our aim: Provide explicit sources with zero entropy and prescribed Shannon weights.

For instance we wish to build a source with

mµ(k) = Θ(
√
k), or mµ(k) = Θ(k/ log3 k) or ...
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Focus on binary sources S: the alphabet is {0, 1}

We focus on recurrent binary sources, which produce

infinite words on {0, 1} with an almost surely infinite number of ones.

Then, a word α begins (a.s) with a prefix w of the form

w = (0u1−11) . . . (0uℓ−1−11) (0uℓ−11) 0u0

... that decomposes into blocks Un = 0n−11 with n ≥ 1

The length of the first block is the waiting time W (α); it encodes this block.

A word α of the source S is written as (W (α), T̂ (α))

with a block shift T̂ that jumps over the block.

This is the recursive definition of another source, the block source B
on the alphabet N, with its two central parameters:

– the waiting time W and its distribution qµ(k) = µ[W > k]

– the number n(w) of ones in the prefix w,

and its average on the prefixes of length k

nµ(k) =
∑
w∈Σk

µ⟨w⟩n(w)
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(II) Generating functions



What can be expected on the three sequences [qµ(k), nµ(k),mµ(k)] ?

a prefix w ∈ Σk of the form (0u1−11) . . . (0uℓ−1−11) (0uℓ−11) 0u0

Expected relation between nµ(k) and mµ(k)?

If the block source B is of finite entropy E(B),

one can expect mµ(k) ∼ E(B)nµ(k), (k → ∞)

We may also expect results with renewal flavour

which relate the waiting time W of symbol one with the number n of ones

perhaps an asymptotic relation between qµ(k) and nµ(k) ?

Our main tools : three generating functions, one for each “cost”,

Mµ(v) =
∑
k

mµ(k)v
k, Nµ(v) =

∑
k

nµ(k)v
k, Qµ(v) =

∑
k

qµ(k)v
k

We obtain relations between these gf’s ....

from which we deduce relations between their coefficients
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∑
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k

We obtain relations between these gf’s ....

from which we deduce relations between their coefficients



Our first result.

Relating the behaviour of generating functions

when the real v tends vers 1−

Result 1. There exist (dynamical) sources with zero entropy for which

▶ the block source B is a “good” source, with entropy E(B),
▶ results of renewal flavour hold.

There is a constant Aµ for which, when the real v tends to 1−

(1− v)Nµ(v)∼1− Aµ
1

(1− v)Qµ(v)
(1− v)Mµ(v)∼1− Aµ

E(B)
(1− v)Qµ(v)

,

and thus (1− v)Mµ(v)∼1− E(B)(1− v)Nµ(v)

The first estimate is of renewal type.

The third estimate is obtained in an indirect way



Our first result.

Relating the behaviour of generating functions

when the real v tends vers 1−

Result 1. There exist (dynamical) sources with zero entropy for which

▶ the block source B is a “good” source, with entropy E(B),
▶ results of renewal flavour hold.

There is a constant Aµ for which, when the real v tends to 1−

(1− v)Nµ(v)∼1− Aµ
1

(1− v)Qµ(v)
(1− v)Mµ(v)∼1− Aµ

E(B)
(1− v)Qµ(v)

,

and thus (1− v)Mµ(v)∼1− E(B)(1− v)Nµ(v)

The first estimate is of renewal type.

The third estimate is obtained in an indirect way



Our first result.

Relating the behaviour of generating functions

when the real v tends vers 1−

Result 1. There exist (dynamical) sources with zero entropy for which

▶ the block source B is a “good” source, with entropy E(B),
▶ results of renewal flavour hold.

There is a constant Aµ for which, when the real v tends to 1−

(1− v)Nµ(v)∼1− Aµ
1

(1− v)Qµ(v)
(1− v)Mµ(v)∼1− Aµ

E(B)
(1− v)Qµ(v)

,

and thus (1− v)Mµ(v)∼1− E(B)(1− v)Nµ(v)

The first estimate is of renewal type.

The third estimate is obtained in an indirect way



From the behaviour of generating functions

to the asymptotics of their coefficients.

A general (fundamental) result due to

[Pringsheim, Hardy-Littlewood, Karamata, between 1900 and 1930]

relates – the dominant behaviour of gf’s with positive coefficients (v → 1)

– with the asymptotic behaviour of their coefficients.

It deals with slowly varying functions.

Here, any power (positive or negative) of the function log.

Abelian–Tauberian Theorem [AT]. Consider:

– a sequence a(n) ≥ 0, its partial sums An = a(0) + a(1) + . . .+ a(n− 1),

the generating function A(v) =
∑

n a(n) v
n, assumed to converge for v ∈ [0, 1[

– a real ρ ≥ 0, a slowly varying function U

Then the assertions (1) and (2) are equivalent:

(1) A(v) ∼v→1−
1

(1− v)ρ
U

(
1

1− v

)
⇐⇒ (2) An ∼n→∞

nρ

Γ(ρ+ 1)
U(n)

Abelian Theorem : (2) =⇒ (1) Tauberian Theorem : (1) =⇒ (2)
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Strategy with a “round trip”. Our final result

We assume a source for which Result 1 holds

together with Result 2 : “ there exists asymptotics for the sequence qµ(n)”

With a round trip strategy based on the AT Theorem, we obtain the final

Result 3 that describes the asymptotic behaviour of Shannon weights.

Result 3.

Result 2 AT Theorem

Asymp. behaviour of qµ(n)

(2) =⇒ (1) Dominant behaviour of (1− v)Qµ(v)

Result 1 ⇓⇓
Asympt behaviour of nµ(n)

(2) ⇐= (1) Dominant behaviours of (1− v)Nµ(v)

or mµ(n) AT Theorem or (1− v)Mµ(v)

Result 3

We are then led to study sources for which both Result 1 and Result 2 hold
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(III) Dynamical sources with indifferent fixed point



A dynamical source S associated with a binary dynamical system (I, T ).

▶ A partition of I := [0, 1] with I0 = [0, c] and I1 =]c, 1]

▶ A shift T has two bijective branches of class C2

A : I0 → I and B : I1 → I
with their inverse denoted as a, b

▶ An encoding σ : I → {0, 1} with σ(x) = j iff x ∈ Ij

▶ Tent shape.

With a measure µ on I, this defines the source S
which emits words M(x) = (σ(x), σ(Tx), . . . σ(T kx), . . .)

Waiting time and block source B.

[W > n] = [q(n), 0], q(n) = an(1)

Partition of I : Jm = [q(m), q(m− 1)]

Inverse branches of B:
gm = am−1 ◦ b are bijections Jm → I

A particular instance.... Farey source
Block source of
Farey = Gauss
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A main tool in our proofs: the “super-generating” function Λ

The trivariate gf Λµ(v, t, s) :=
∑

w∈{0,1}⋆
v|w| tn(w)µ⟨w⟩s

has formal derivatives (wrt to t and s) related to Nµ(v) and Mµ(v),

Nµ(v) =
∂

∂t
Λµ(v, t, s)|s=1,t=1 , Mµ(v) = − ∂

∂s
Λµ(v, t, s)|s=1,t=1 .

– For memoryless sources, the mapping w 7→ µ⟨w⟩ is a morphism.

With the decomposition Σ⋆ = U⋆ · Z, the gf Λµ admits a product form

– For dynamical sources, with the “dynamical analysis method” [Va, 2000]

there is also an extended “product form” for Λµ

Λµ(v, t, s) =
∑
n≥0

vn q(n)s (I − tGv,s)
−1[Φs

µ] (0, q(n))

which involves the weighted transfer operator Gv,s of the block source,

Gv,s[F ](x, y) =
∑
m≥1

vm
∣∣∣∣gm(x)− gm(y)

x− y

∣∣∣∣s F (gm(x), gm(y)) .
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Taking the derivatives of the supergenerating function Λµ ?

Remind: Λµ(v, t, s) =
∑
n≥0

vn q(n)s (I − tGv,s)
−1[Φs

µ] (0, q(n))

and Nµ(v) =
∂

∂t
Λµ(v, t, s)|s=1,t=1 , Mµ(v) = − ∂

∂s
Λµ(v, t, s)|s=1,t=1 .

We thus wish to take derivatives of Λµ wrt to t or to s at (t, s) = (1, 1)....

and thus (if ok!) derivatives of the quasi inverse (I − tGv,s)
−1....

... that each involve a double quasi-inverse

wrt to t at (t, s) = (1, 1): (I −Gv,1)
−1 ◦Gv,1 ◦ (I −Gv,1)

−1

wrt to s at (t, s) = (1, 1): (I −Gv,1)
−1 ◦ ∂

∂sGv,s|s=1 ◦ (I −Gv,1)
−1

Main questions.

– Is it “allowed” to take the derivatives?

– What is the behaviour of (I −Gv,1)
−1 when v → 1−?
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Towards Result 1 ?

Assume that the weighted transfer operator Gv,s of the block source,

Gv,s[F ](x, y) =
∑
m≥1

vm
∣∣∣∣gm(x)− gm(y)

x− y

∣∣∣∣s F (gm(x), gm(y)) .

when acting on C1 functions,

has strong dominant properties at (v, s) = (1, 1)

– a dominant eigenvalue λ(v, 1) which tends to 1 as v → 1−

and satisfies 1− λ(v, 1) ∼v→1− (1− v)Q(v)

– a dominant eigenfunction Ψ at (v, s) = (1, 1)

– with a spectral gap

Then: (I−Gv,1)
−1[F ] ∼v→1−

Ψ

1− λ(v, 1)
∼v→1−

Ψ

(1− v)Q(v)

And thus Nµ(v) ∼v→1−
1

(1− v)2Q(v)
Mµ(v) ∼v→1−

E(B)
(1− v)2Q(v)

This proves the estimates stated in our Result 1 !
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A good class of dynamical sources with indifferent fixed points

These sources occur

– when the inverse branches a and b are strictly contracting on ]0, 1],

|a′(x)| < 1 and |b′(x)| < 1 except perhaps at x = 0

– the branch a has a fixed indifferent fixed point at 0: a(0) = 0, a′(0) = 1.

We deal in particular with the subclass DRIL(γ, δ) (γ ≥ 1) which gathers

the systems for which the branch a satisfies a′(x) = 1− xγVδ(x),

with

(
γ > 1, Vδ(x) =

∣∣∣log x

2

∣∣∣δ) or
(
γ = 1, V0(x) ∈ C1

)
.

Two important results for the subclass DRIL(γ, δ).
(a) Result 2 [Aaronson 1980].

There is an asymptotics behaviour for the sequence q(n)

(b) Result 1. [Ours, this work]

The operator Gv,s of the source B admits dominant spectral properties
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(IV) Conclusion: Exhibiting sources with prescribed Shannon weights

We deal with sources of the Class DRIL(γ, δ) and apply Results 1, 2

and thus Result 3

The class DRIL(γ, δ) provides instances of binary dynamical sources

with Shannon weights of various orders, depending on (γ, δ)
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