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I- The objects

a) Pattern avoiding 3-permutations
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Pattern avoidance in permutations

A permutation σ ∈ Sn contains a pattern π ∈ Sk if there is a set of indices
I such that σ|I ' π. Otherwise, it avoids it.

σ = 324615 contains the pattern π = 231.

The diagram of a permutation σ ∈ Sn is the set of points
Pσ = {(i, σ(i)) | 1 6 i 6 n}. It has exactly one point per row and per column.
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Pattern avoidance in 3-permutations
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A 3-diagram has exactly one point per plane of the grid.

(264153, 632514)

It is coded by a 3-permutation (σ, τ) ∈ S2
n:

P(σ,τ) = {(i, σ(i), τ(i)) | 1 6 i 6 n}.
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Pattern avoidance in 3-permutations

A 3-permutation (σ, τ) ∈ S2
n contains a pattern (π1, π2) ∈ S2

k if there is a
set of indices I ⊂ J1, nK such that σ|I ' π1 and τ|I ' π2.
Otherwise it avoids it.
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A 3-diagram has exactly one point per plane of the grid.

(264153, 632514) contains the pattern (312, 231).
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Pattern avoidance classes

[Bonichon & Morel ‘22]
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Pattern avoidance classes

[Bonichon & Morel ‘22]

(12, 12) (312, 231)
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Pattern avoidance classes
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I- The objects

b) Triangle Bases
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Filling configurations

A configuration of size n is a set of n cells in the triangle Tn of size n.
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Triangle bases

A triangle basis of size n is a configuration of n points that fills Tn.
Denote Bn their set.

A basis. Not a basis.
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Triangle bases

A triangle basis of size n is a configuration of n points that fills Tn.
Denote Bn their set.

A basis. Not a basis.

I Used to study “totally extremaly permutive” subshifts, a generalisation of
bipermutive cellular automata [Salo ‘20].
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Triangle bases

A triangle basis of size n is a configuration of n points that fills Tn.
Denote Bn their set.

A basis. Not a basis.

Theorem. [S. ‘25] For all n, the set of triangle bases of size n is in bijection
with Avn((12, 12), (312, 231)).
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II- A bijection

Γ
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Rσ(i)

Lτ (i)σ(i)

τ(i)

i i

The bijection

An inversion of σ ∈ Sn is (i, j) ∈ J1, nK with i < j and σ(i) > σ(j).

Γ : (σ, τ) 7→ {(rσ(i), `τ (i)) | i ∈ J1, nK}

Right inversion set at i
rσ(i) = |Rσ(i)|

Left inversion set at i
`τ (i) = |Lτ (i)|

The bijection from 3-permutations to bases:
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The bijection

0 1 2 3 4 5

0

1

2

3

4

5
Γ : (σ, τ) 7→ {(rσ(i), `τ (i)) | i ∈ J1, nK}
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The bijection

0 1 2 3 4 5
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Γ : (σ, τ) 7→ {(rσ(i), `τ (i)) | i ∈ J1, nK}

i = 1 7→ (1, 0)
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The bijection

0 1 2 3 4 5
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Γ : (σ, τ) 7→ {(rσ(i), `τ (i)) | i ∈ J1, nK}

i = 2 7→ (3, 1)
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The bijection

0 1 2 3 4 5
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Γ : (σ, τ) 7→ {(rσ(i), `τ (i)) | i ∈ J1, nK}

i = 3 7→ (2, 1)
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The bijection

0 1 2 3 4 5
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Γ : (σ, τ) 7→ {(rσ(i), `τ (i)) | i ∈ J1, nK}

i = 4 7→ (1, 2)
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The bijection

0 1 2 3 4 5
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Γ : (σ, τ) 7→ {(rσ(i), `τ (i)) | i ∈ J1, nK}

i = 5 7→ (1, 4)
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The bijection

0 1 2 3 4 5
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Γ : (σ, τ) 7→ {(rσ(i), `τ (i)) | i ∈ J1, nK}

i = 6 7→ (0, 1)
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The bijection

Theorem. [S. ‘25] For all n, Γ is a bijection between
Avn((12, 12), (312, 231)) and the triangle bases of size n.
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Γ : (σ, τ) 7→ {(rσ(i), `τ (i)) | i ∈ J1, nK}
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Why does avoiding (12, 12) and (312, 231)
lead to a triangle basis?
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Intuition

(12, 12) (312, 231)
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Avoiding (12, 12): no “points too close”
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Avoiding (12, 12): no “points too close”

rσ(i) > rσ(j) `τ (i) < `τ (j)
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Consequence: If (σ, τ) avoids (12, 12) then
• all points (rσ(i), `τ (i)) are distinct
• the configuration is sparse: there is no triangle T of

size k such that |C ∩ T | > k.
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Avoiding (312, 231): no “points too far”

the only sparse
configuration of size 3

that does not fill.

Γ

Intuition: Avoiding (312, 231) prevents “gaps”.
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Avoiding (312, 231): no “points too far”

the only sparse
configuration of size 3

that does not fill.

Γ

Γ

Intuition: Avoiding (312, 231) prevents “gaps”.
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Avoiding (312, 231): no “points too far”

rσ(i)� rσ(j) ≈ rσ(k) `τ (i) ≈ `τ (j)� `τ (k)

j
i

j

k

i

k i

k

j

Points too far to fill

Γ
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The key tool of the proof:

Isomorphic recursive decompositions

B1

B2

σ1σ1

τ1 τ1
σ2

τ2

3-permutations Bases
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Isomorphic recursive decompositions

Lemma. [Salo, S. ‘22] Any basis of size n > 2 can be cut into two smaller
bases in one of the 3 following ways.
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Isomorphic recursive decompositions

Lemma. [Salo, S. ‘22] Any basis of size n > 2 can be cut into two smaller
bases in one of the 3 following ways.

Proposition. [S. ‘25] Γ transports the cuts.

Lemma. [S. ‘25] Any 3-permutation of Avn((12, 12), (312, 231)) can be cut
into two smaller 3-permutations in one of the 3 following ways.
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Isomorphic recursive decompositions

I We can now prove everything by induction!
• Γ(Avn((12, 12), (312, 231))) ⊂ Bn
• Γ is surjective
• Γ is injective.

Lemma. [Salo, S. ‘22] Any basis of size n > 2 can be cut into two smaller
bases in one of the 3 following ways.

Proposition. [S. ‘25] Γ transports the cuts.

Lemma. [S. ‘25] Any 3-permutation of Avn((12, 12), (312, 231)) can be cut
into two smaller 3-permutations in one of the 3 following ways.
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• Simple construction.

• Transports symmetries.

Nice properties and consequences

ρ

120°
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• Simple construction.

• Transports symmetries.

Nice properties and consequences

• Links two objects that are understood very differently =⇒ tools transfert.

I On bases:
- A canonical labelling of the points.
- Maybe a characterisation by forbidden patterns ?

I On permutations: a dynamical system on 3-permutations (and others!)
which could allow sampling.
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III- Solitaire game
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Solitaire game on configurations
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Solitaire game on configurations
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Solitaire game on configurations

Theorem. [Salo, S. 22] The orbit of the line J0, n− 1K× {0} consists of the
triangle bases of size n.
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Solitaire game on permutations

Theorem. The orbit of the line (id, id) is Avn((12, 12), (312, 231)).

Theorem. [Salo, S. ‘22] The orbit of the line J0, n− 1K× {0} is the triangle
bases of size n.
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Solitaire game on permutations
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Solitaire game on permutations
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Solitaire game on permutations
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Solitaire game on permutations

x

j

i

j

i

x

y z
j

j
j

j

i

i

i

i



20/22

Solitaire game on permutations
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Solitaire game on permutations
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Solitaire game on permutations
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Solitaire game on permutations
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Solitaire game on permutations
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Solitaire game on permutations
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Uniform sampling?

Lemma. [Salo, S. ‘22] The diameter of the line orbit for the solitaire is Θ(n3).

Finding one basis is easy but enumerating them is hard ⇒ use the solitaire for
random sampling!

Question. What is the mixing time of the solitaire?
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What’s next?

• No enumerative result.

I Best known bounds : 3n! 6 |Bn| 6 c
(e

2

)n
nn−

5
2 with c > 0.

|Avn((12, 12), (312, 231))| 6 |Avn(12, 12)| = number of weak Bruhat
intervals (unknown).

I Conjecture: |Bn| ∼ cn!e
√
12nn5/12.



22/22

What’s next?

• No enumerative result.

I Best known bounds : 3n! 6 |Bn| 6 c
(e

2

)n
nn−

5
2 with c > 0.

|Avn((12, 12), (312, 231))| 6 |Avn(12, 12)| = number of weak Bruhat
intervals (unknown).

I Conjecture: |Bn| ∼ cn!e
√
12nn5/12.

• The solitaire is defined on all of Av(12, 12), what are the other orbits?

I Γ induces a bijection on each permutation orbit with a configuration
orbit.

• Γ is well defined on all of Av(12, 12). Could it give correspondance between
other pattern avoiding classes of 3-permutations and sparse configurations?
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What’s next?

• No enumerative result.

I Best known bounds : 3n! 6 |Bn| 6 c
(e

2

)n
nn−

5
2 with c > 0.

|Avn((12, 12), (312, 231))| 6 |Avn(12, 12)| = number of weak Bruhat
intervals (unknown).

I Conjecture: |Bn| ∼ cn!e
√
12nn5/12.

• The solitaire is defined on all of Av(12, 12), what are the other orbits?

I Γ induces a bijection on each permutation orbit with a configuration
orbit.

• Γ is well defined on all of Av(12, 12). Could it give correspondance between
other pattern avoiding classes of 3-permutations and sparse configurations?

• Extend Γ to higher dimensions?

Thank you!


