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Pattern avoidance in permutations

The of a permutation o € G,, is the set of points
P, ={(i,0(i)) | 1 <i < n}. It has exactly one point per row and per column.

A permutation 0 € G,, a pattern m € G, if there is a set of indices
I such that o . Otherwise, it It.
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1 2 3 4 5 6
o = 324615 contains the pattern m = 231.
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Pattern avoidance in 3-permutations

A 3-diagram has exactly one point per plane of the grid.

It is coded by a 3-permutation (o,7) € &2:
Plo,ry = {(4,0(2),7(2)) | 1 <7 < nj.
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Pattern avoidance in 3-permutations

A 3-diagram has exactly one point per plane of the grid.

A 3-permutation (o, 7) € &2 contains a pattern (71, 7>) € &3 if there is a

set of indices I C [1,n] such that o; ~ 7 and 7); ~ .

Otherwise it avoids it.

1 23456
(264153, 632514) contains the pattern (312,231).
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Pattern avoidance classes

Patterns TWE Sequence Comment
(12,12) 4 1,3,17,151,1899, 31711, - - - weak-Bruhat intervals
(12,12), (12,21) 6 n!=1,2,6,24,120- - - 01 = 09
(12,12), (12,21), |
(21,12) 4 1,1,1,1,1,1, 1 diagonal
(12,12), (12,21),
(21,12), (21,21) | 1 1,0,0,0,0,0,
(123,123) 4 1,4,35,524,11774, 366352, - - - new
(123,132) 24 1,4,35,524,11768, 365558, - - - new
(132,213) 8 1,4,35,524,11759, 364372, - - - new
(12,12), (132, 312) 48 (n+1)"""=1,3,16,125,1296 - - - | [Atkinson et al. 93,95]
(12,12), (123, 321) 12 1,3,16,124,1262, 15898, - - - distributive lattices inter.
(12,12), (231, 312) 8 1,3,16,122,1188,13844, - - - A2959287

[Bonichon & Morel ‘22]
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Pattern avoidance classes

Patterns TWE Sequence Comment
(12,12) 4 1,3,17,151,1899, 31711, - - - weak-Bruhat intervals
(12,12),(12,21) 6 n!=1,2,6,24,120--- o1 = 02
(12=ﬁ§%*§23=21)’ 4 1,1,1,1,1,1, - - 1 diagonal
(12,12), (12,21),
(21,12), (21,21) | 1 1,0,0,0,0,0,
(123,123) 4 1,4,35,524,11774, 366352, - - - new
(123,132) 24 1,4,35,524,11768, 365558, - - - new
(132,213) 8 1,4,35,524,11759, 364372, - - - new
(12,12),(132,312) | 48 | (n+1)"""=1,3,16,125,1296--- | [Atkinson et al. 93,95]
(12,12), (123, 321) 12 distributive lattices inter.

1,3,16,124, 1262, 15898, - - -

(12,12)

(312, 231)

Bonichon & Morel ‘22]
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Pattern avoidance classes

A295928

Number of triangular matrices T(n,1,k), k <=1 <= n, with entries "0" or "1" with the property that each triple {T(n,i,k), T(n,i,k+1), T(n,i-
1,k)} containing a single "0" can be successively replaced by {1, 1, 1} until finally no "0" entry remains.

1, 3, 16, 122, 1188, 13844, 185448, 2781348, 45868268

(list; graph; refs; listen; history; text; internal format)

OFFSET
COMMENTS

LINKS

EXAMPLE

1,2

A triple {T(n,i,k), T(n,i,k+1), T(n,i-1,k)} will be called a primitive triangle. It is easy to see that b(n)
= n(n-1)/2 is the number of such triangles. At each step, exactly one primitive triangle is completed
(replaced by {1, 1, 1}). So there are b(n) "0"- and n "1"-terms. Thus the starting matrix has no complete
primitive triangle. Furthermore, any triangular submatrix T(m,i,k), k <= i <= m < n cannot have more than
m "1"-terms because otherwise it would have less "@"-terms than primitive triangles. The replacement of at
least one "0"-term would complete more than one primitive triangle. This has been excluded.

So T(n, i, k) is a special case of U(n, i, k), described in A101481: a(n) < A101481(n+1).

A start matrix may serve as a pattern for a number wall used on worksheets for elementary mathematics, see
link "Number walls". That is why I prefer the more descriptive name "fill matrix".

The algorithm for the sequence is rather slow because each start matrix is constructed separately. There
exists a faster recursive algorithm which produces the same terms and therefore is likely to be correct,
but it is based on a conjecture. For the theory of the recurrence, see "Recursive aspects of fill
matrices". Probable extension a(10)-a(14): 821096828, 15804092592, 324709899276, 7081361097108,
163179784397820.

The number of fill matrices with n rows and all "1"- terms concentrated on the last two rows, is A001960(n).
See link "Reconstruction of a sequence".

Table of n, a(n) for n=1..9.

Gerhard Kirchner, Recursive aspects of fill matrices

Gerhard Kirchner, Number walls

Gerhard Kirchner, VB-program

Gerhard Kirchner, Reconstruction of a sequence

Ville Salo, Cutting Corners, arXiv:2002.0873@ [math.DS], 2020.

Yuan Yao and Fedir Yudin, Fine Mixed Subdivisions of a Dilated Triangle, arXiv:2402.13342 [math.C0], 2024.

Example (n=2): 0 1 1
a(2)=3 11 61 10

Example for completing a 3-matrix (3 bottom terms):
1 1 1 1

20 — 106-—- 11— 11
110 1180 110 111
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I- The objects
b) Triangle Bases
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Filling configurations

A of size n is a set of n cells in the triangle T}, of size n.
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Filling configurations

of size n is a set of n cells in the triangle T;, of size n.

fills the empty cell of a triangle with exactly one empty cell.
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Filling configurations

of size n is a set of n cells in the triangle T;, of size n.

fills the empty cell of a triangle with exactly one empty cell.
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Filling configurations

A of size n is a set of n cells in the triangle T}, of size n.

A fills the empty cell of a triangle with exactly one empty cell.
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Filling configurations

A configuration of size n is a set of n cells in the triangle T}, of size n.

A filling step fills the empty cell of a triangle with exactly one empty cell.

0 mm
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Filling configurations

of size n is a set of n cells in the triangle T;, of size n.

fills the empty cell of a triangle with exactly one empty cell.
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Filling configurations

of size n is a set of n cells in the triangle T;, of size n.

fills the empty cell of a triangle with exactly one empty cell.
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Triangle bases

A triangle basis of size n is a configuration of n points that fills 'I5,.
Denote B,, their set.

SEEm-

A basis. Not a basis.
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Triangle bases

A triangle basis of size n is a configuration of n points that fills 7T;,.
Denote B,, their set.

SEEm-

A basis. Not a basis.

» Used to study “totally extremaly permutive” subshifts, a generalisation of
bipermutive cellular automata [Salo “20].
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Triangle bases

A triangle basis of size n is a configuration of n points that fills 7T;,.
Denote B,, their set.

SEEm-

A basis. Not a basis.

Theorem. [S. “25] For all n, the set of triangle bases of size n is in bijection
with Awv,, ((12,12), (312,231)).

8 /22



H N W s WU ]

- A bijection
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The bijection

An inversion of 0 € G,, is (4,7) € [1,n] with ¢ < j and o(2) > o(J).

Right inversion set at 1 Left inversion set at
ro(1) = |Ro(1)] € (i) = [L+(2)

The bijection from 3-permutations to bases:
[ (o, 7) = {(re(2),6-(2)) | © € [1,n]}
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The bijection

T (o,7) = {(r, (i), 0, (1) | i € [1,n]}

o =N W s Ot
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The bijection

T (o,7) = {(r, (i), 0, (1) | i € [1,n]}

i =1+ (1,0)

o =N W s Ot
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The bijection

T (o,7) = {(r, (i), 0, (1) | i € [1,n]}

i =2 (3,1)

o =N W s Ot
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The bijection

T (o,7) = {(r, (i), 0, (1) | i € [1,n]}

o =N W s Ot
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The bijection

T (o,7) = {(r, (i), 0, (1) | i € [1,n]}
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The bijection

T (o,7) = {(r, (i), 0, (1) | i € [1,n]}

Theorem. [S. ‘25] For all n, I is a bijection between
Avy,((12,12),(312,231)) and the triangle bases of size n.
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Why does avoiding (12,12) and (312, 231)
lead to a triangle basis?

Intuition

(12,12) (312,231)

12/22



Avoiding (12,12): no “points too close”
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Avoiding (12,12): no “points too close”

75(1) > 7(7)

Consequence: If (o,7) avoids (12,12) then
e all points (r,(7), (7)) are distinct
e the configuration is sparse: there is no triangle T of
size k such that |CNT| > k.

or
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Avoiding (312,231): no “points too far”

the only sparse
configuration of size 3
that does not fill.

- - I

L] L] —_—

Intuition: Avoiding (312,231) prevents “gaps”.
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Avoiding (312,231): no “points too far”

the only sparse
configuration of size 3
that does not fill.

- - |

L] L] —
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Avoiding (312,231): no “points too far”

e
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The key tool of the proof:

Isomorphic recursive decompositions

BN
=

3-permutations Bases
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Isomorphic recursive decompositions

Lemma. [Salo, S. 22| Any basis of size n > 2 can be cut into two smaller
bases in one of the 3 following ways.
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Isomorphic recursive decompositions

Lemma. [Salo, S. 22| Any basis of size n > 2 can be cut into two smaller
bases in one of the 3 following ways.

\ ;

nd By

Lemma. [S. 25| Any 3-permutation of Av,((12,12),(312,231)) can be cut
into two smaller 3-permutations in one of the 3 following ways.

Proposition. [S. 25] T" transports the cuts.



Isomorphic recursive decompositions

Lemma. [Salo, S. 22| Any basis of size n > 2 can be cut into two smaller
bases in one of the 3 following ways.

Lemma. [S. 25| Any 3-permutation of Av,((12,12),(312,231)) can be cut
into two smaller 3-permutations in one of the 3 following ways.

Proposition. [S. ‘25] T transports the cuts.

» We can now prove everything by induction!
o I'(Av,((12,12),(312,231))) C B,
e I’ Is surjective
e [ Is Injective.
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Nice properties and consequences

e Simple construction.

o Transports symmetries.
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Nice properties and consequences

Simple construction.
Transports symmetries.
Links two objects that are understood very differently = tools transfert.

On bases:
- A canonical labelling of the points.
- Maybe a characterisation by forbidden patterns ?

On permutations: a dynamical system on 3-permutations (and others!)
which could allow sampling.
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I1l- Solitaire game
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Solitaire game on configurations

=
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Solitaire game on configurations
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Solitaire game on configurations

T
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Solitaire game on configurations
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Solitaire game on configurations

=

19/22



Solitaire game on configurations

T
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Solitaire game on configurations
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Solitaire game on configurations

=
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Solitaire game on configurations

e

< >

—

< >

Theorem. [Salo, S. 22] The orbit of the line [0,n — 1] x {0} consists of the
triangle bases of size n.
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Solitaire game on permutations

b M-
R (e

20/22



Solitaire game on permutations
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Solitaire game on permutations

Theorem. [Salo, S. ‘22| The orbit of the line [0,n — 1] x {0} is the triangle
bases of size n.

Theorem. The orbit of the line (id, id) is Av,((12,12), (312,231)).
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Solitaire game on permutations
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Solitaire game on permutations
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Solitaire game on permutations
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Solitaire game on permutations

J i ; i ; .
<g> - <i> . J
1 j J j J .
'— T —
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Solitaire game on permutations

J i ; i ; .
<g> - <i> . J
1 j J j J .
'— T —

N
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Solitaire game on permutations

J i ; i ; .
dgb : <i> : J
) j J Z J .
'— T —
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Solitaire game on permutations
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Solitaire game on permutations

20/22



Solitaire game on permutations

20/22



Solitaire game on permutations
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Uniform sampling?

Finding one basis is easy but enumerating them is hard = use the solitaire for
random sampling!

Question. What is the mixing time of the solitaire?

Lemma. [Salo, S. ‘22] The diameter of the line orbit for the solitaire is ©(n?).
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What’s next?

No enumerative result.

Best known bounds : 3n! < |B,| < ¢ (g) n™"3 with ¢ > 0.

| Av, ((12,12), (312,231))| < |Av,, (12, 12)] = number of weak Bruhat

intervals (unknown).

Conjecture: |B,,| ~ cnle¥V1?"n>/12,
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What’s next?

No enumerative result.

Best known bounds : 3n! < |B,| < ¢ (g) n™"3 with ¢ > 0.

|Av,, ((12,12),(312,231))] < |Av,(12,12)] = number of weak Bruhat

intervals (unknown).
Conjecture: |B,,| ~ cnle¥V1?"n>/12,

The solitaire is defined on all of Av(12,12), what are the other orbits?

[ is well defined on all of Av(12,12). Could it give correspondance between

other pattern avoiding classes of 3-permutations and sparse configurations?

I' induces a bijection on each permutation orbit with a configuration
orbit.
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What’s next?

No enumerative result.

€

Best known bounds : 3n! < |B,| < ¢ (5) n™"3 with ¢ > 0.

| Avn ((12,12), (312,231))] < |Ava(12, 12)] = number of weak Bruhat
intervals (unknown).

Conjecture: |B,,| ~ cnle¥V1?"n>/12,

The solitaire is defined on all of Av(12,12), what are the other orbits?

[ is well defined on all of Av(12,12). Could it give correspondance between
other pattern avoiding classes of 3-permutations and sparse configurations?

I' induces a bijection on each permutation orbit with a configuration
orbit.
Extend I' to higher dimensions?
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