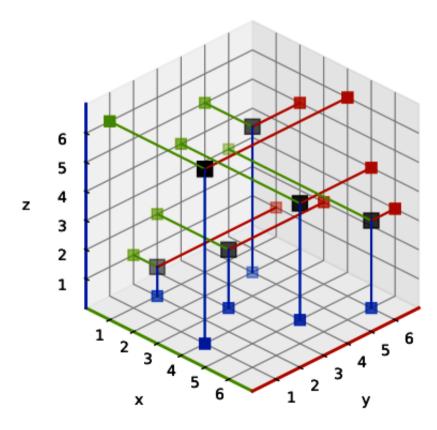
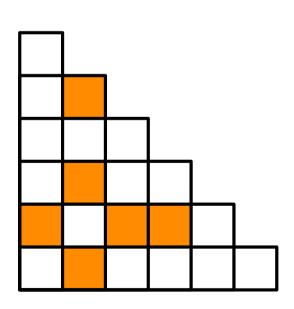
Pattern avoiding 3-permutations and triangle bases

Juliette Schabanel

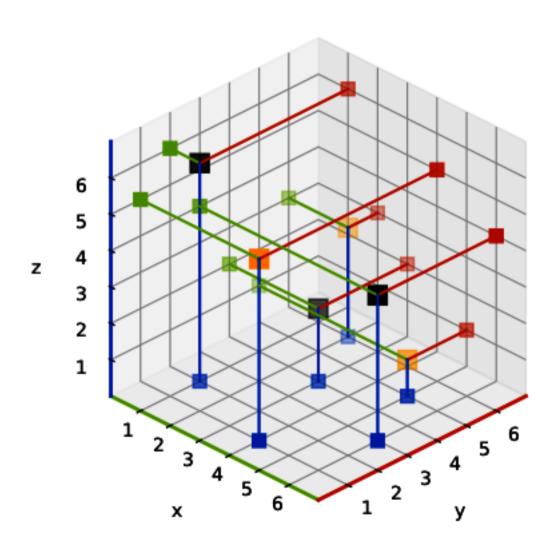
LaBRI, Université de Bordeaux





I- The objects

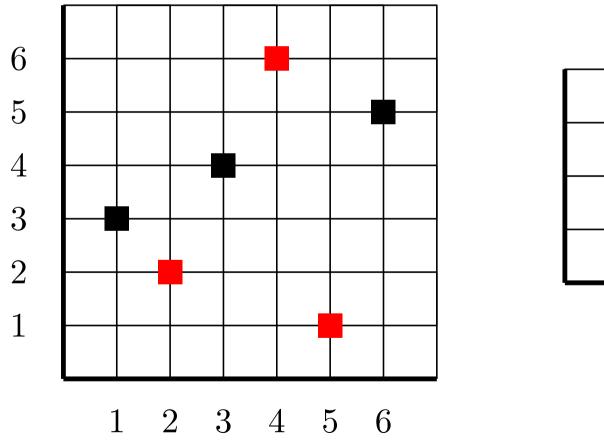
a) Pattern avoiding 3-permutations

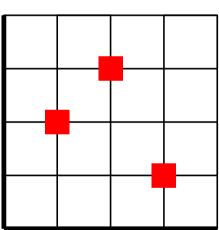


Pattern avoidance in permutations

The diagram of a permutation $\sigma \in \mathfrak{S}_n$ is the set of points $P_{\sigma} = \{(i, \sigma(i)) \mid 1 \leqslant i \leqslant n\}$. It has exactly one point per row and per column.

A permutation $\sigma \in \mathfrak{S}_n$ contains a pattern $\pi \in \mathfrak{S}_k$ if there is a set of indices I such that $\sigma_{|I} \simeq \pi$. Otherwise, it avoids it.



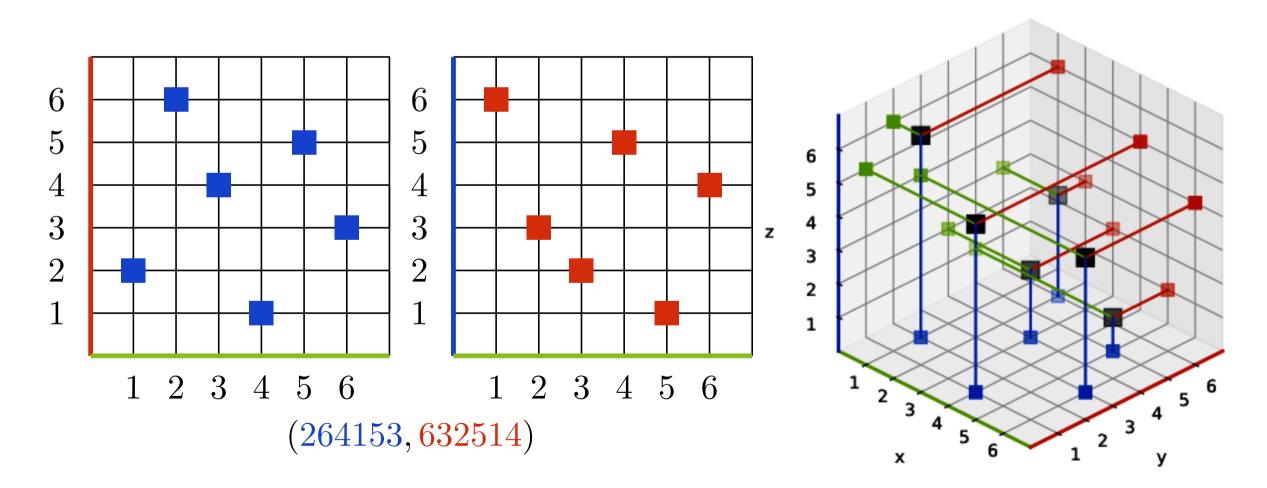


 $\sigma=324615$ contains the pattern $\pi=231$.

Pattern avoidance in 3-permutations

A 3-diagram has exactly one point per plane of the grid.

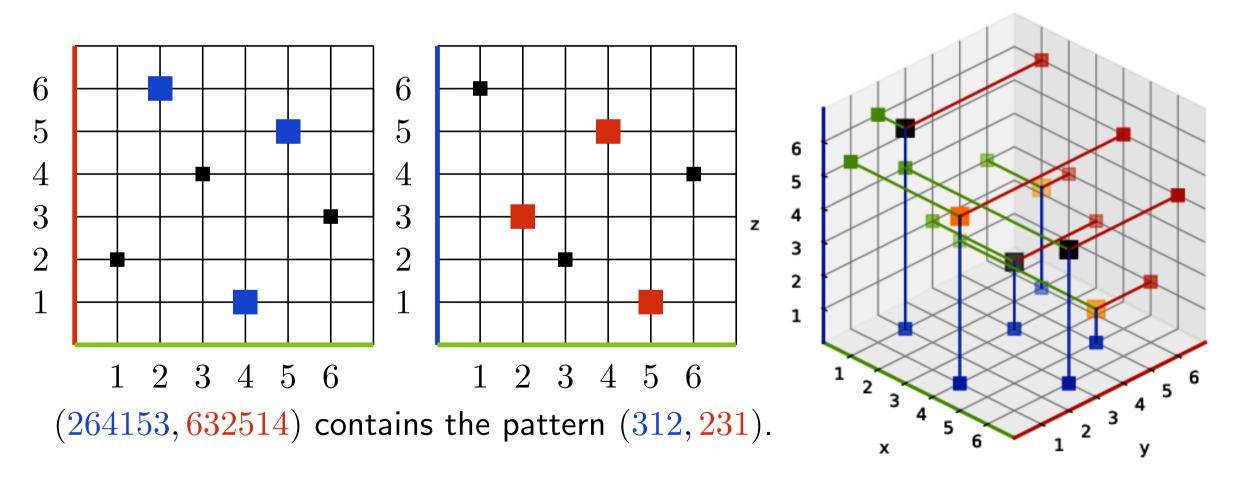
It is coded by a 3-permutation $(\sigma, \tau) \in \mathfrak{S}_n^2$: $P_{(\sigma,\tau)} = \{(i, \sigma(i), \tau(i)) \mid 1 \leqslant i \leqslant n\}.$



Pattern avoidance in 3-permutations

A 3-diagram has exactly one point per plane of the grid.

A 3-permutation $(\sigma, \tau) \in \mathfrak{S}_n^2$ contains a pattern $(\pi_1, \pi_2) \in \mathfrak{S}_k^2$ if there is a set of indices $I \subset [\![1, n]\!]$ such that $\sigma_{|I} \simeq \pi_1$ and $\tau_{|I} \simeq \pi_2$. Otherwise it avoids it.



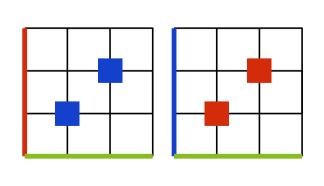
Pattern avoidance classes

Patterns	TWE	Sequence	Comment
(12, 12)	4	$1, 3, 17, 151, 1899, 31711, \cdots$	weak-Bruhat intervals
(12, 12), (12, 21)	6	$n! = 1, 2, 6, 24, 120 \cdots$	$\sigma_1 \Rightarrow \sigma_2$
(12, 12), (12, 21), (21, 12)	4	$1,1,1,1,1,\dots$	1 diagonal
(12, 12), (12, 21), (21, 12), (21, 21)	1	$1,0,0,0,0,\cdots$	
(123, 123)	4	$1, 4, 35, 524, 11774, 366352, \cdots$	new
(123, 132)	24	$1, 4, 35, 524, 11768, 365558, \cdots$	new
(132, 213)	8	$1, 4, 35, 524, 11759, 364372, \cdots$	new
(12, 12), (132, 312)	48	$(n+1)^{n-1} = 1, 3, 16, 125, 1296 \cdots$	[Atkinson et al. 93,95]
(12, 12), (123, 321)	12	$1, 3, 16, 124, 1262, 15898, \cdots$	distributive lattices inter.
(12, 12), (231, 312)	8	$1, 3, 16, 122, 1188, 13844, \cdots$	A295928?

[Bonichon & Morel '22]

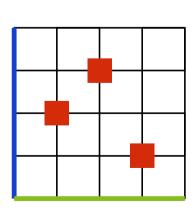
Pattern avoidance classes

Patterns	TWE	Sequence	Comment
(12, 12)	4	$1, 3, 17, 151, 1899, 31711, \cdots$	weak-Bruhat intervals
(12, 12), (12, 21)	6	$n! = 1, 2, 6, 24, 120 \cdots$	$\sigma_1 \Rightarrow \sigma_2$
(12, 12), (12, 21), (21, 12)	4	$1,1,1,1,1,1,\cdots$	1 diagonal
(12, 12), (12, 21), (21, 12), (21, 21)	1	$1,0,0,0,0,\cdots$	
(123, 123)	4	$1, 4, 35, 524, 11774, 366352, \cdots$	new
(123, 132)	24	$1, 4, 35, 524, 11768, 365558, \cdots$	new
(132, 213)	8	$1, 4, 35, 524, 11759, 364372, \cdots$	new
(12, 12), (132, 312)	48	$(n+1)^{n-1} = 1, 3, 16, 125, 1296 \cdots$	[Atkinson et al. 93,95]
(12, 12), (123, 321)	12	$1, 3, 16, 124, 1262, 15898, \cdots$	distributive lattices inter.
(12, 12), (231, 312)	8	$1, 3, 16, 122, 1188, 13844, \cdots$	A295928?



(12, 12)

(210



(312, 231)

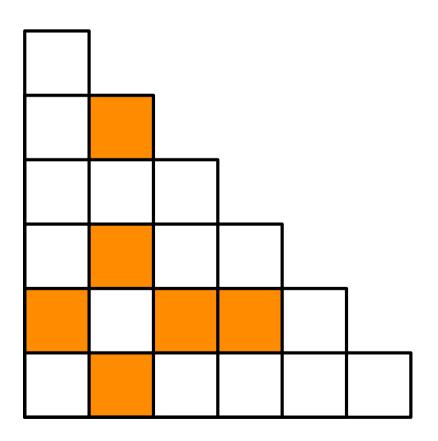
[Bonichon & Morel '22]

Pattern avoidance classes

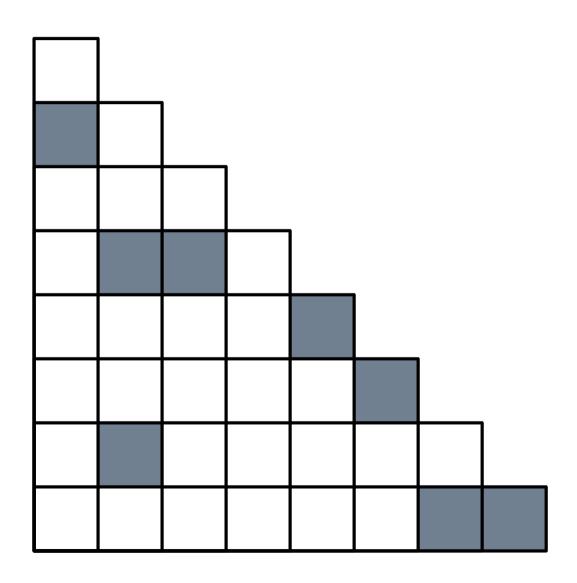
```
A295928
                        Number of triangular matrices T(n,i,k), k \le i \le n, with entries "0" or "1" with the property that each triple \{T(n,i,k), T(n,i,k+1), T(n,i-1,k+1), T(n,i-1,k+1), T(n,i,k+1), T(n,i,k
                        1,k) containing a single "0" can be successively replaced by {1, 1, 1} until finally no "0" entry remains.
      1, 3, 16, 122, 1188, 13844, 185448, 2781348, 45868268
     (list; graph; refs; listen; history; text; internal format)
      OFFSET
                              1,2
                              A triple \{T(n,i,k), T(n,i,k+1), T(n,i-1,k)\} will be called a primitive triangle. It is easy to see that b(n)
      COMMENTS
                                  = n(n-1)/2 is the number of such triangles. At each step, exactly one primitive triangle is completed
                                  (replaced by {1, 1, 1}). So there are b(n) "0"- and n "1"-terms. Thus the starting matrix has no complete
                                  primitive triangle. Furthermore, any triangular submatrix T(m,i,k), k \le i \le m < n cannot have more than
                                 m "1"-terms because otherwise it would have less "0"-terms than primitive triangles. The replacement of at
                                  least one "0"-term would complete more than one primitive triangle. This has been excluded.
                              So T(n, i, k) is a special case of U(n, i, k), described in \underline{A101481}: a(n) < \underline{A101481}(n+1).
                              A start matrix may serve as a pattern for a number wall used on worksheets for elementary mathematics, see
                                  link "Number walls". That is why I prefer the more descriptive name "fill matrix".
                              The algorithm for the sequence is rather slow because each start matrix is constructed separately. There
                                  exists a faster recursive algorithm which produces the same terms and therefore is likely to be correct,
                                  but it is based on a conjecture. For the theory of the recurrence, see "Recursive aspects of fill
                                 matrices". Probable extension a(10)-a(14): 821096828, 15804092592, 324709899276, 7081361097108,
                                  163179784397820.
                              The number of fill matrices with n rows and all "1"- terms concentrated on the last two rows, is A001960(n).
                              See link "Reconstruction of a sequence".
                              Table of n, a(n) for n=1...9.
      LINKS
                              Gerhard Kirchner, Recursive aspects of fill matrices
                              Gerhard Kirchner, Number walls
                              Gerhard Kirchner, VB-program
                              Gerhard Kirchner, Reconstruction of a sequence
                              Ville Salo, Cutting Corners, arXiv:2002.08730 [math.DS], 2020.
                              Yuan Yao and Fedir Yudin, Fine Mixed Subdivisions of a Dilated Triangle, arXiv:2402.13342 [math.CO], 2024.
                              Example (n=2):
      EXAMPLE
                                     a(2)=3
                                                              11 01 10
                              Example for completing a 3-matrix (3 bottom terms):
                                                                                    1
                                   0 0 -> 1 0 -> 1 1 -> 1 1
                                 110 110 110 111
```

I- The objects

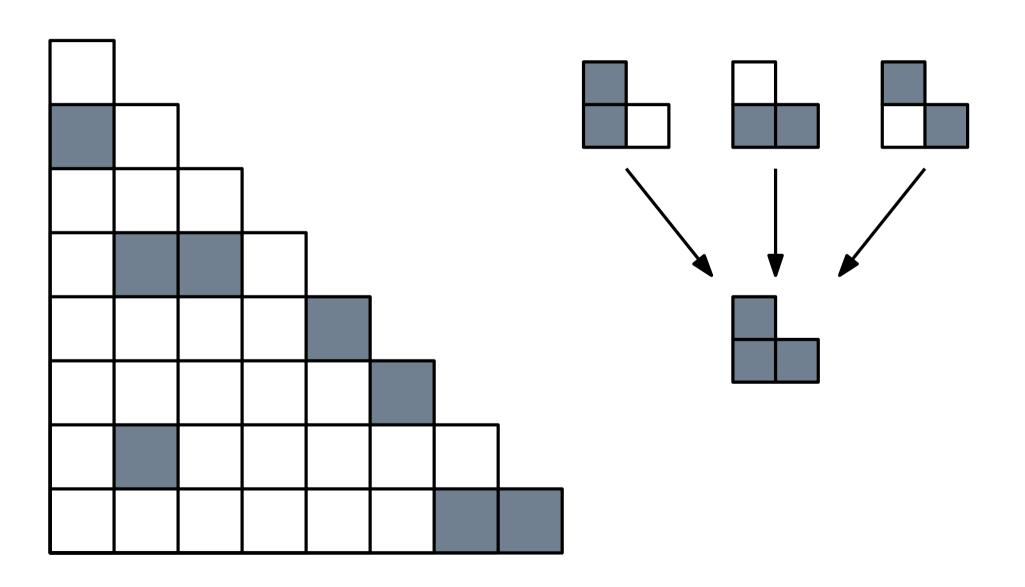
b) Triangle Bases



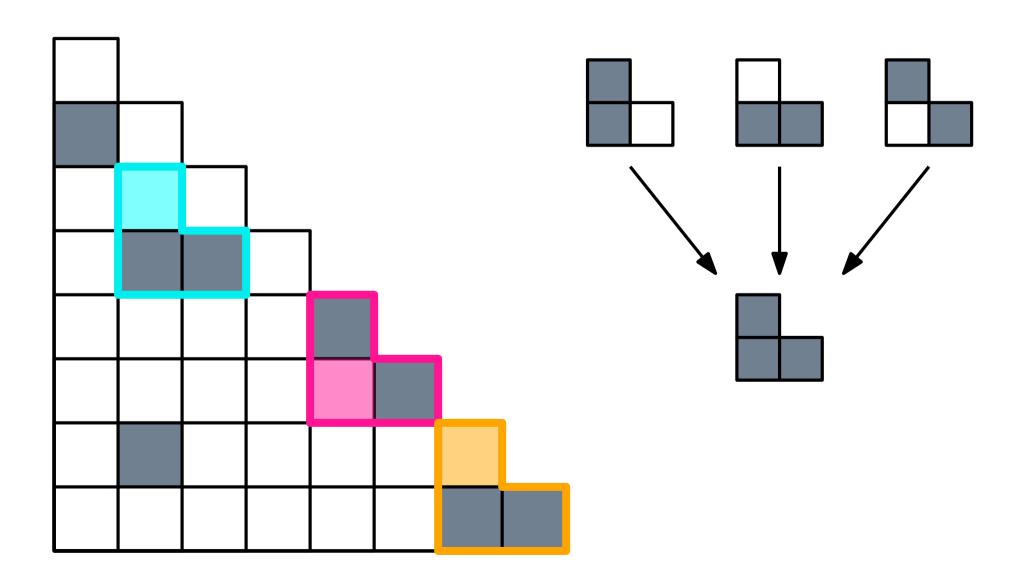
A configuration of size n is a set of n cells in the triangle T_n of size n.



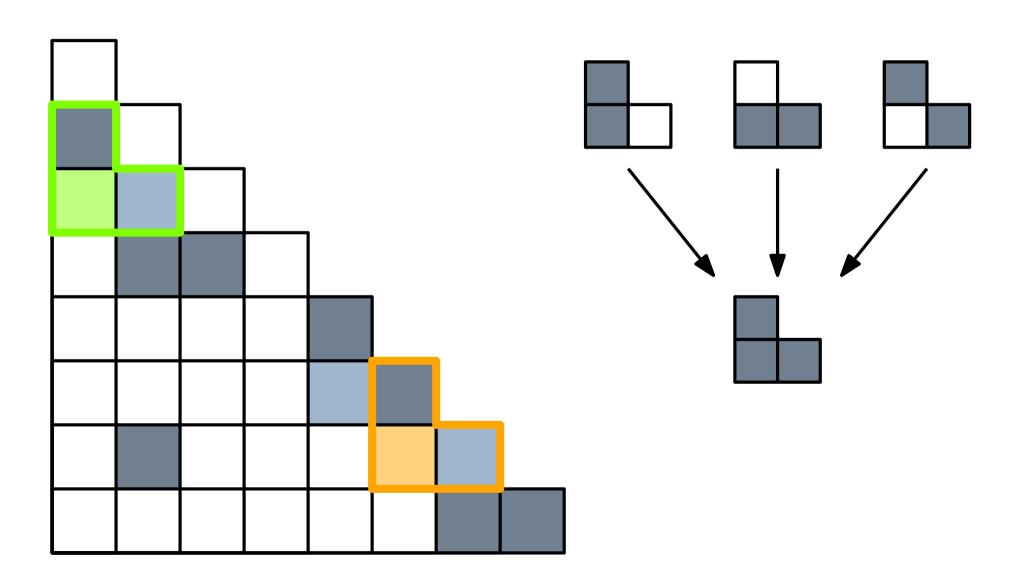
A configuration of size n is a set of n cells in the triangle T_n of size n.



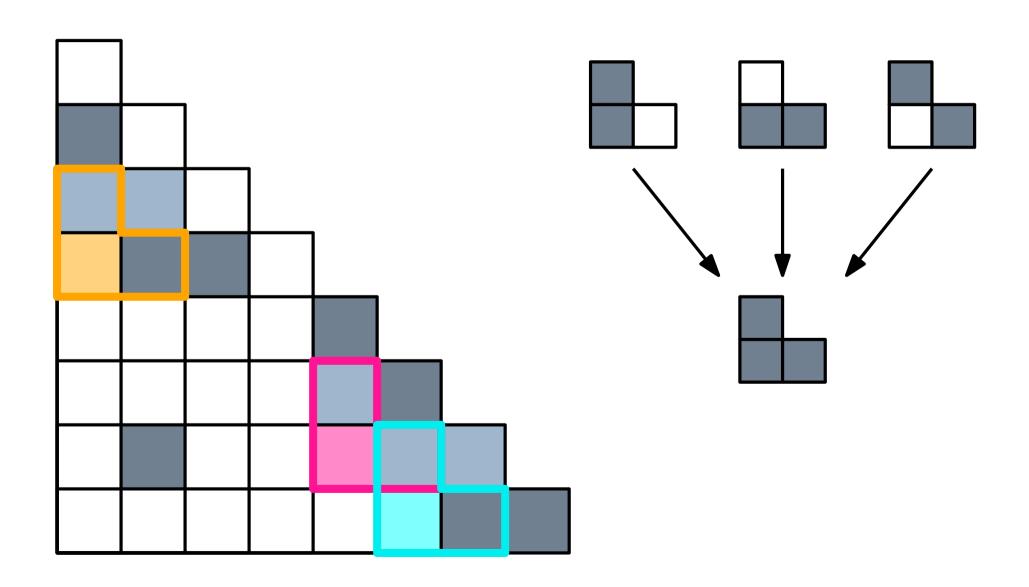
A configuration of size n is a set of n cells in the triangle T_n of size n.



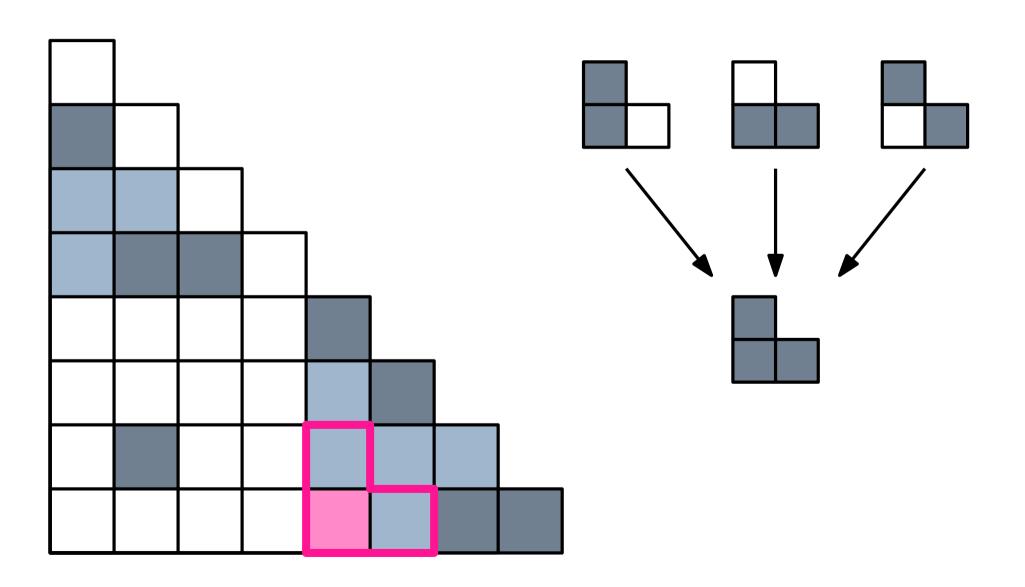
A configuration of size n is a set of n cells in the triangle T_n of size n.



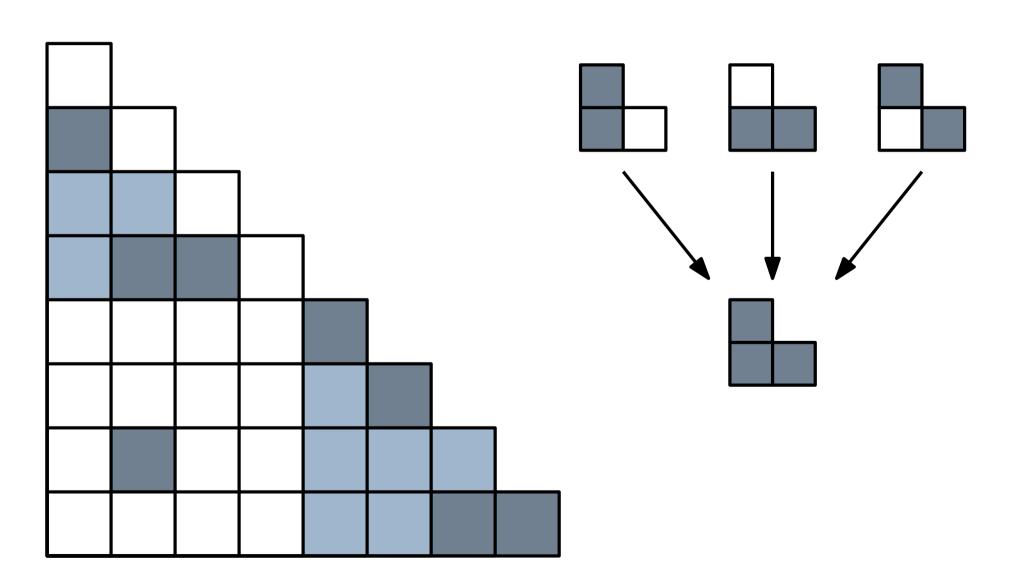
A configuration of size n is a set of n cells in the triangle T_n of size n.



A configuration of size n is a set of n cells in the triangle T_n of size n.

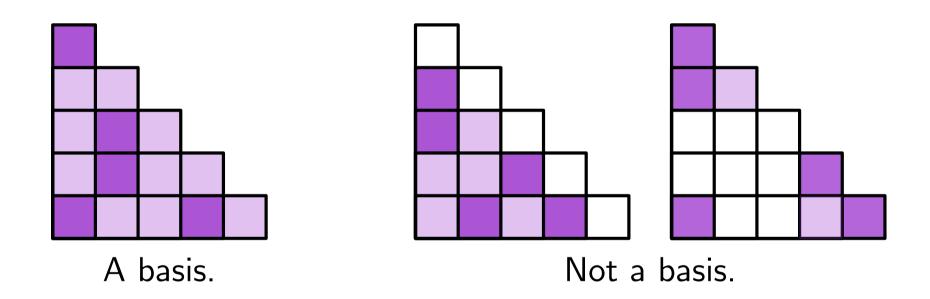


A configuration of size n is a set of n cells in the triangle T_n of size n.



Triangle bases

A triangle basis of size n is a configuration of n points that fills T_n . Denote \mathcal{B}_n their set.



Triangle bases

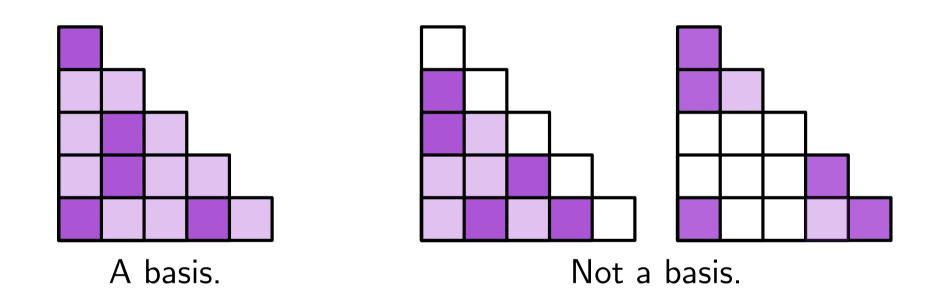
A triangle basis of size n is a configuration of n points that fills T_n . Denote \mathcal{B}_n their set.



► Used to study "totally extremaly permutive" subshifts, a generalisation of bipermutive cellular automata [Salo '20].

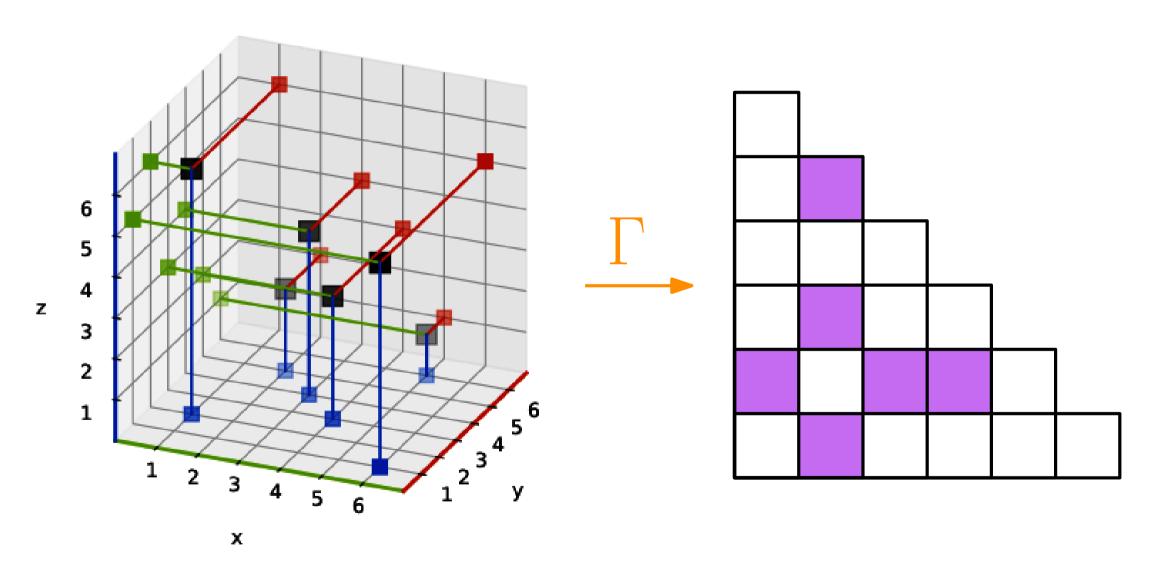
Triangle bases

A triangle basis of size n is a configuration of n points that fills T_n . Denote \mathcal{B}_n their set.

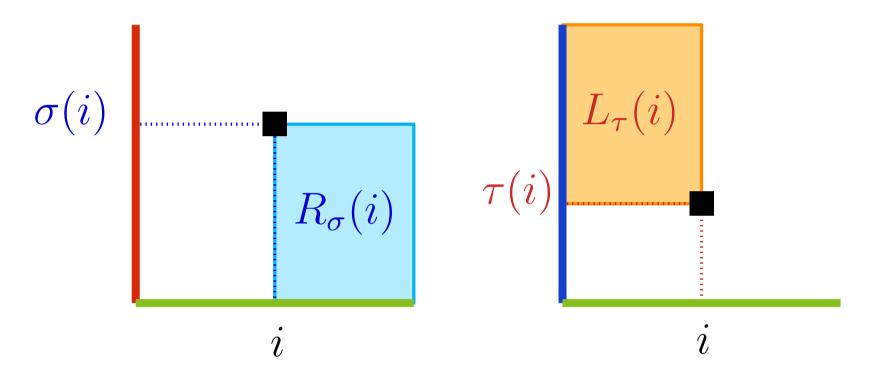


Theorem. [S. '25] For all n, the set of triangle bases of size n is in bijection with $Av_n((12,12),(312,231))$.

II- A bijection



An inversion of $\sigma \in \mathfrak{S}_n$ is $(i,j) \in [1,n]$ with i < j and $\sigma(i) > \sigma(j)$.



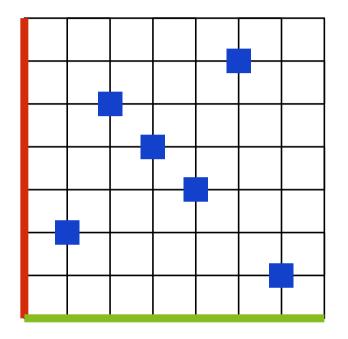
Right inversion set at i $r_{\sigma}(i) = |R_{\sigma}(i)|$

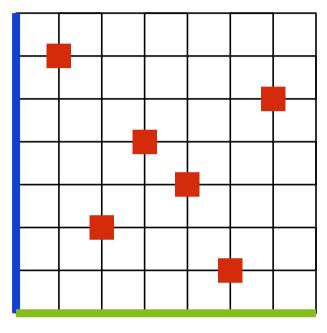
Left inversion set at i $\ell_{\tau}(i) = |L_{\tau}(i)|$

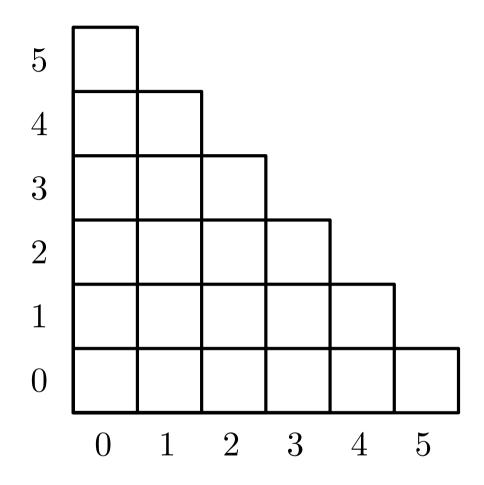
The bijection from 3-permutations to bases:

$$\Gamma: (\sigma, \tau) \mapsto \{(r_{\sigma}(i), \ell_{\tau}(i)) \mid i \in [1, n]\}$$

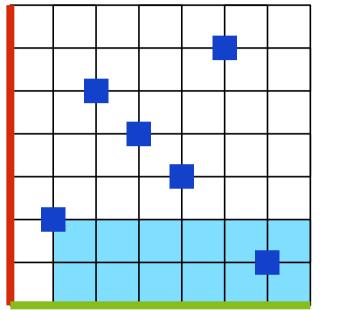
$$\Gamma: (\sigma, \tau) \mapsto \{(r_{\sigma}(i), \ell_{\tau}(i)) \mid i \in [1, n]\}$$

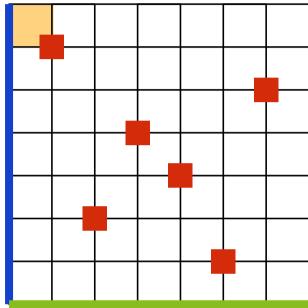




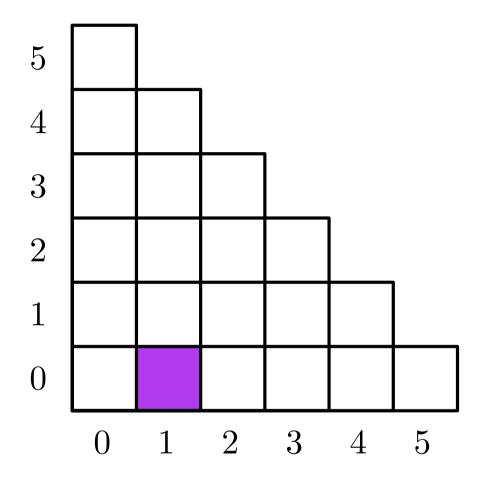


$$\Gamma: (\sigma, \tau) \mapsto \{(r_{\sigma}(i), \ell_{\tau}(i)) \mid i \in [1, n]\}$$

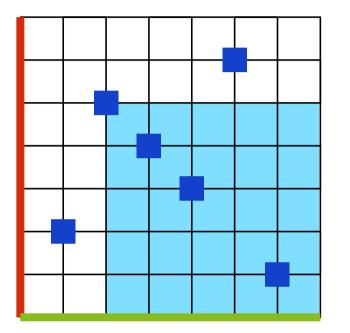


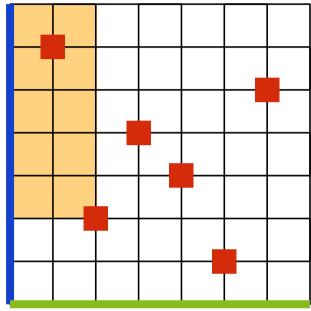


$$i=1\mapsto (1,0)$$

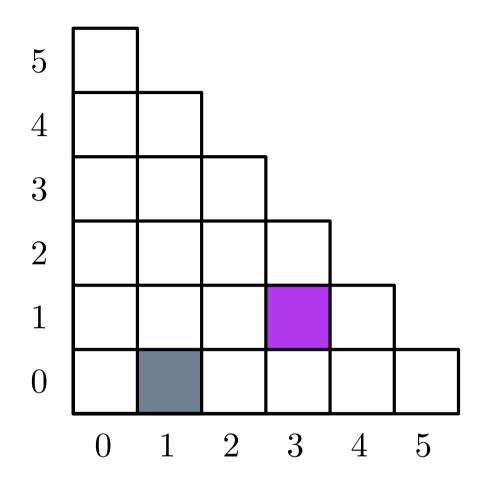


$$\Gamma: (\sigma, \tau) \mapsto \{(r_{\sigma}(i), \ell_{\tau}(i)) \mid i \in [1, n]\}$$

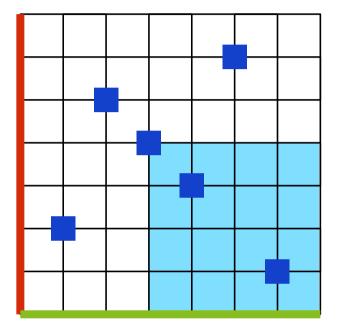


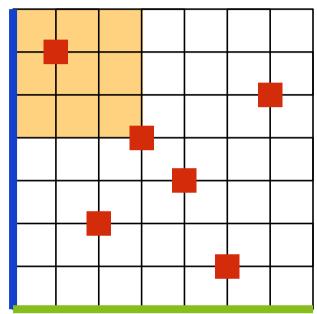


$$i=2\mapsto (3,1)$$

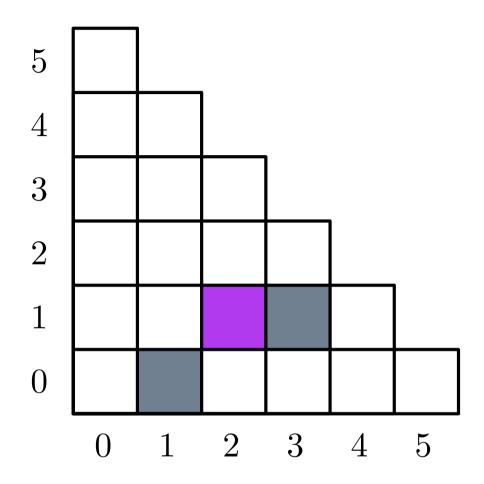


$$\Gamma: (\sigma, \tau) \mapsto \{(r_{\sigma}(i), \ell_{\tau}(i)) \mid i \in [1, n]\}$$

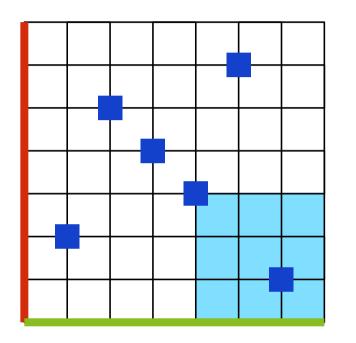


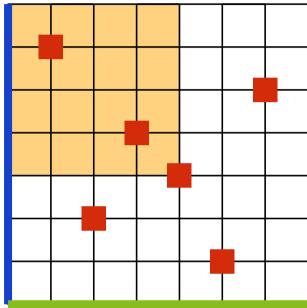


$$i=3\mapsto (2,1)$$

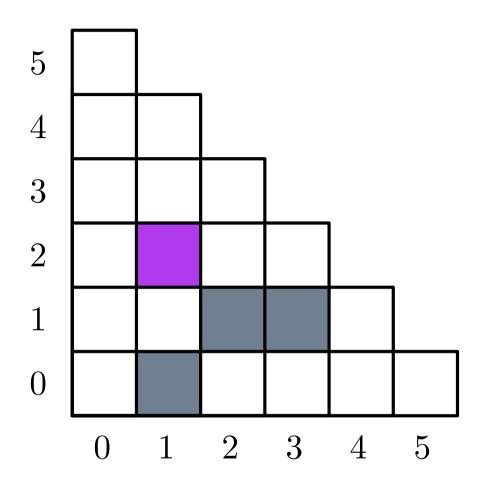


$$\Gamma: (\sigma, \tau) \mapsto \{(r_{\sigma}(i), \ell_{\tau}(i)) \mid i \in [1, n]\}$$

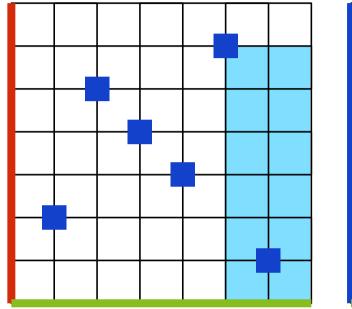


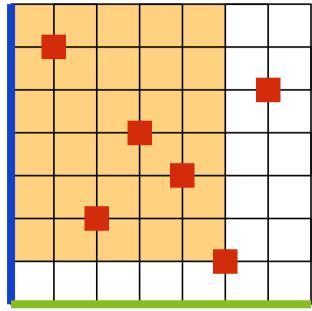


$$i=4\mapsto (1,2)$$

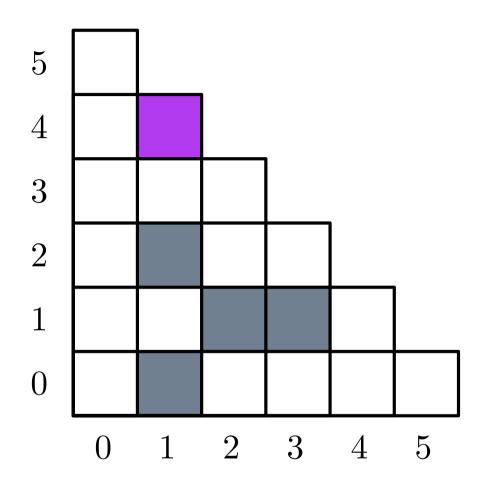


$$\Gamma: (\sigma, \tau) \mapsto \{(r_{\sigma}(i), \ell_{\tau}(i)) \mid i \in [1, n]\}$$

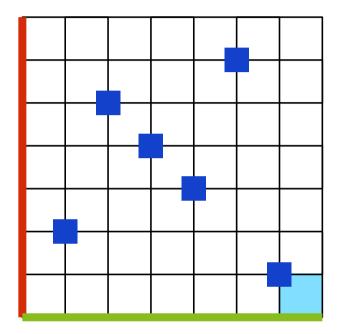


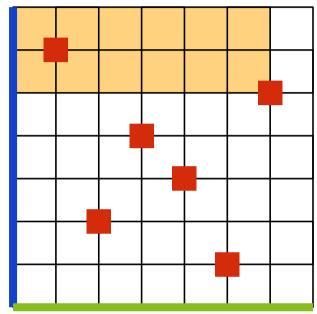


$$i=5\mapsto (1,4)$$

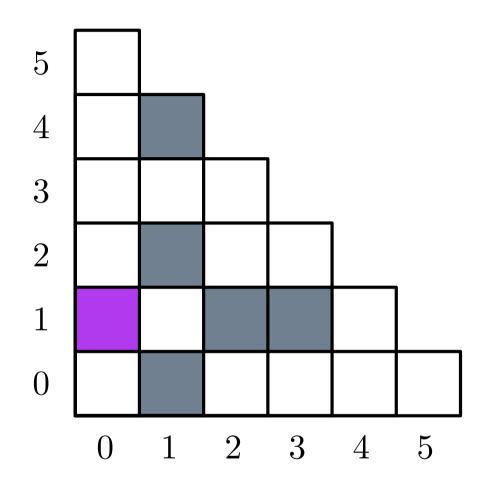


$$\Gamma: (\sigma, \tau) \mapsto \{(r_{\sigma}(i), \ell_{\tau}(i)) \mid i \in [1, n]\}$$

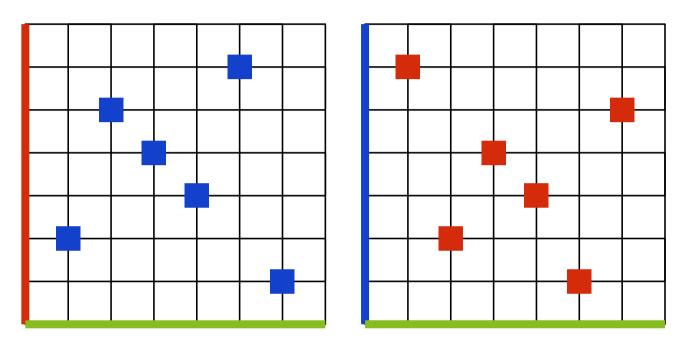


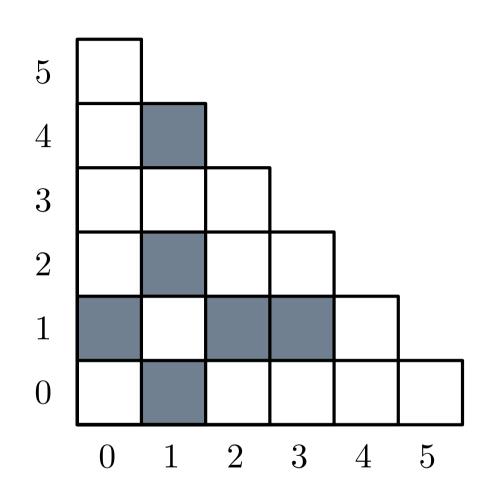


$$i=6\mapsto (0,1)$$



$$\Gamma: (\sigma, \tau) \mapsto \{(r_{\sigma}(i), \ell_{\tau}(i)) \mid i \in [1, n]\}$$

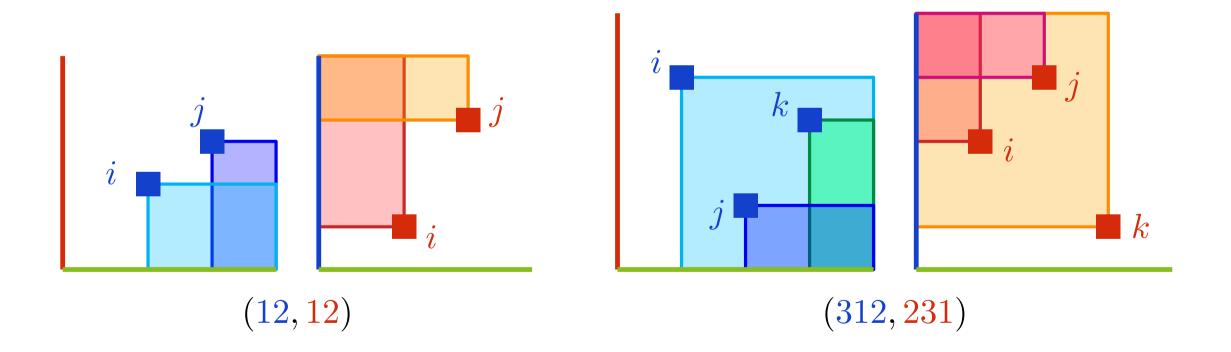




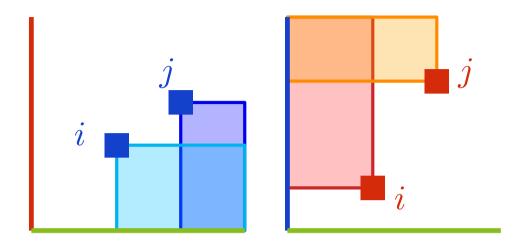
Theorem. [S. '25] For all n, Γ is a bijection between $Av_n((12,12),(312,231))$ and the triangle bases of size n.

Why does avoiding (12,12) and (312,231) lead to a triangle basis?

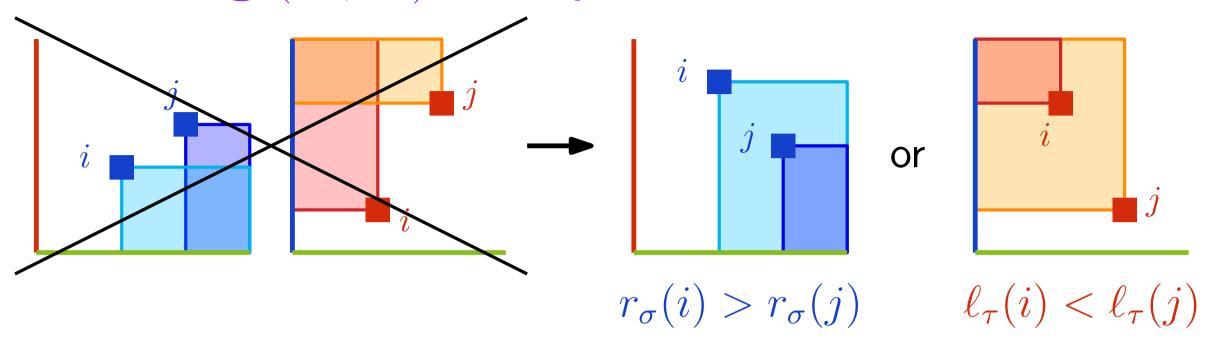
Intuition



Avoiding (12, 12): no "points too close"

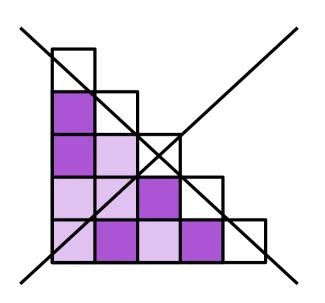


Avoiding (12, 12): no "points too close"

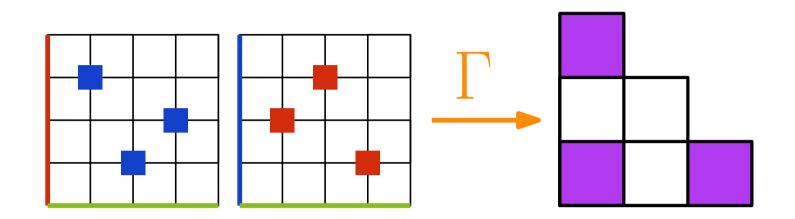


Consequence: If (σ, τ) avoids (12, 12) then

- all points $(r_{\sigma}(i), \ell_{\tau}(i))$ are distinct
- the configuration is sparse: there is no triangle T of size k such that $|C \cap T| > k$.



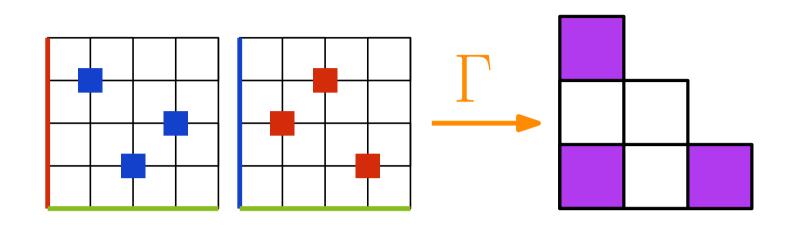
Avoiding (312, 231): no "points too far"



the only sparse configuration of size 3 that does not fill.

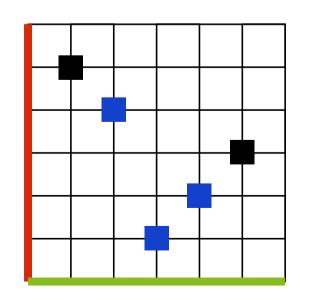
Intuition: Avoiding (312, 231) prevents "gaps".

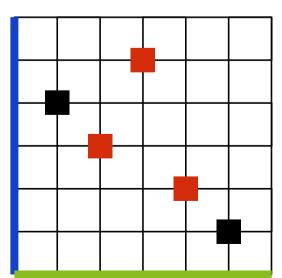
Avoiding (312, 231): no "points too far"



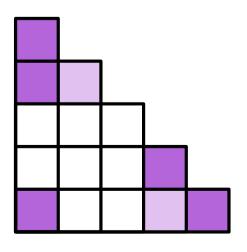
the only sparse configuration of size 3 that does not fill.

Intuition: Avoiding (312, 231) prevents "gaps".

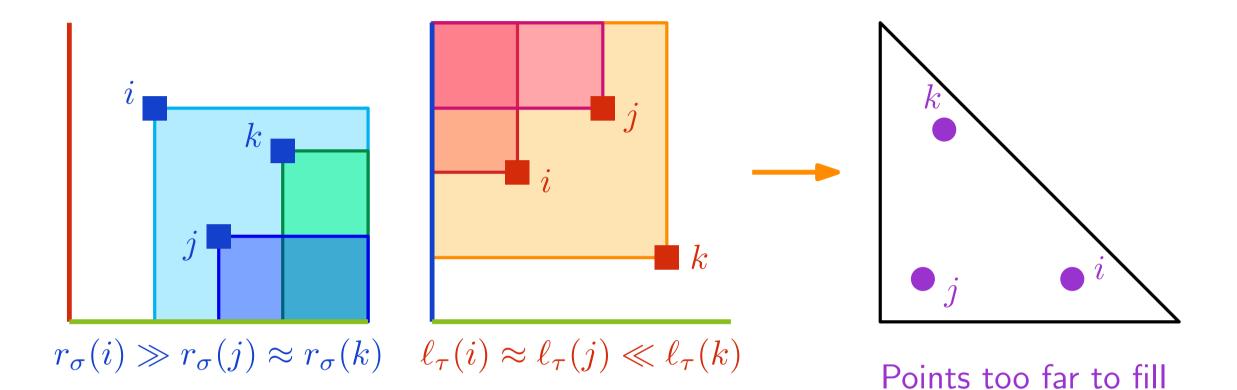


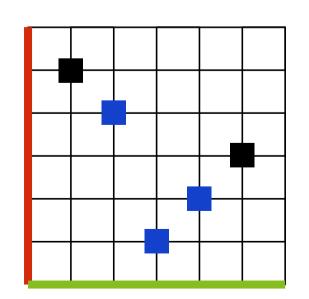


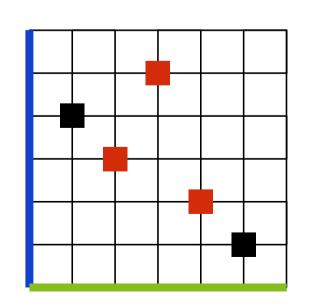


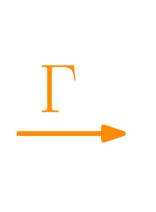


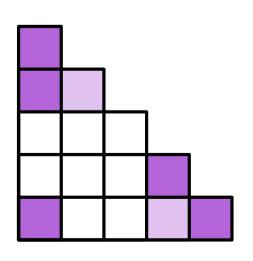
Avoiding (312, 231): no "points too far"



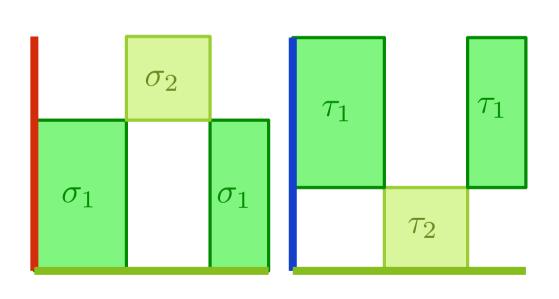




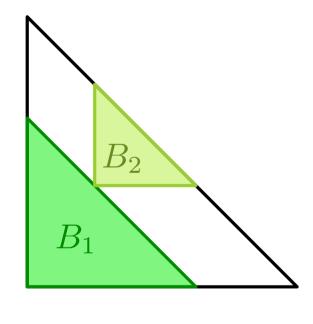




The key tool of the proof: Isomorphic recursive decompositions



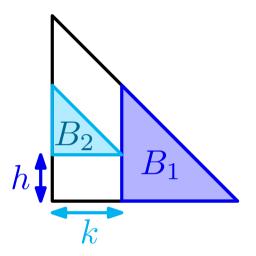
3-permutations

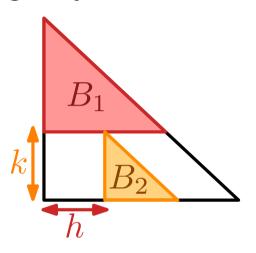


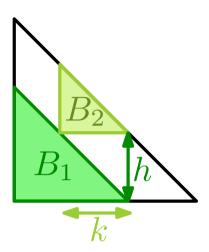
Bases

Isomorphic recursive decompositions

Lemma. [Salo, S. '22] Any basis of size $n \ge 2$ can be cut into two smaller bases in one of the 3 following ways.

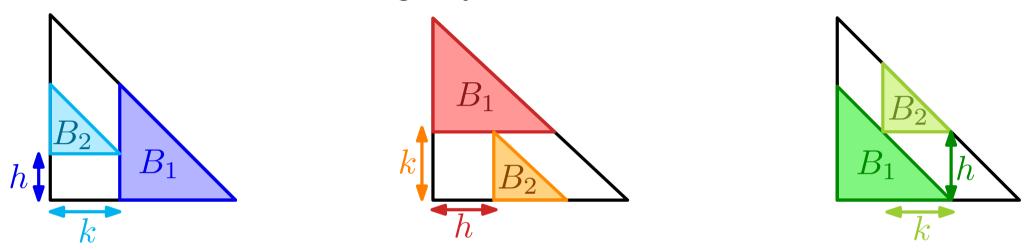




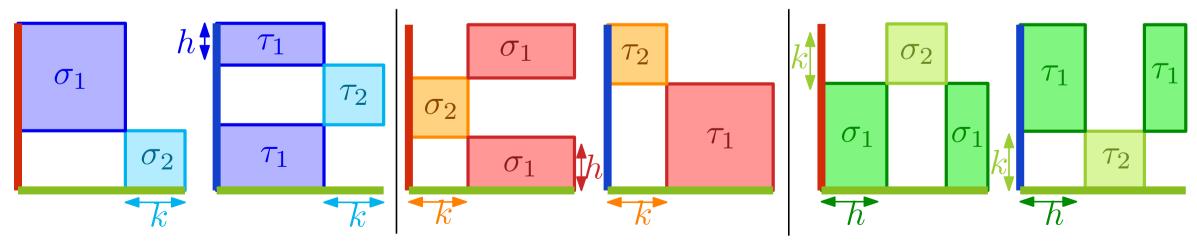


Isomorphic recursive decompositions

Lemma. [Salo, S. '22] Any basis of size $n \ge 2$ can be cut into two smaller bases in one of the 3 following ways.



Lemma. [S. '25] Any 3-permutation of $Av_n((12,12),(312,231))$ can be cut into two smaller 3-permutations in one of the 3 following ways.



Proposition. [S. '25] Γ transports the cuts.

Isomorphic recursive decompositions

Lemma. [Salo, S. '22] Any basis of size $n \ge 2$ can be cut into two smaller bases in one of the 3 following ways.

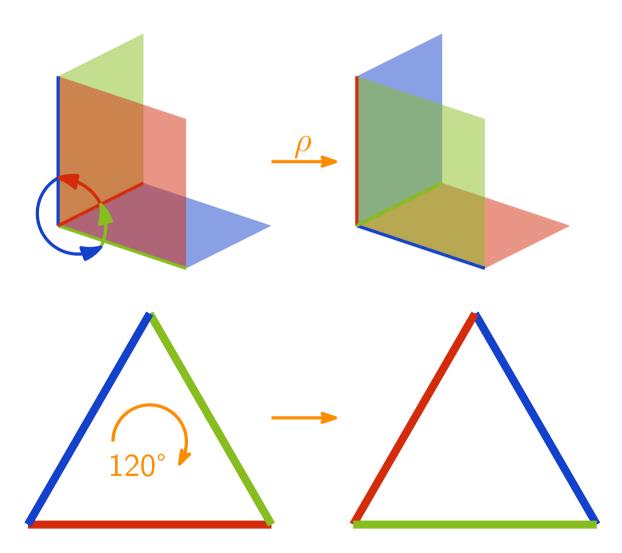
Lemma. [S. '25] Any 3-permutation of $Av_n((12,12),(312,231))$ can be cut into two smaller 3-permutations in one of the 3 following ways.

Proposition. [S. '25] Γ transports the cuts.

- We can now prove everything by induction!
 - $\Gamma(Av_n((12, 12), (312, 231))) \subset \mathcal{B}_n$
 - \bullet Γ is surjective
 - \bullet Γ is injective.

Nice properties and consequences

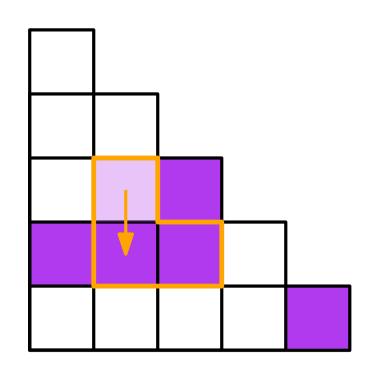
- Simple construction.
- Transports symmetries.

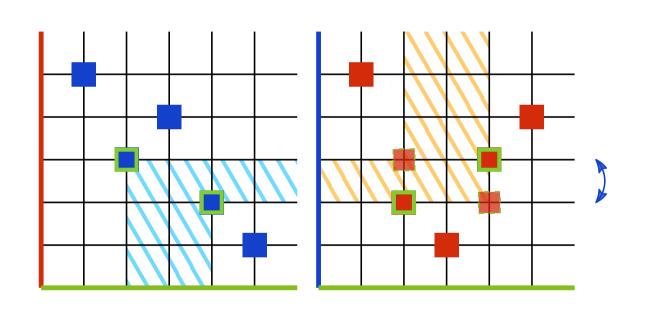


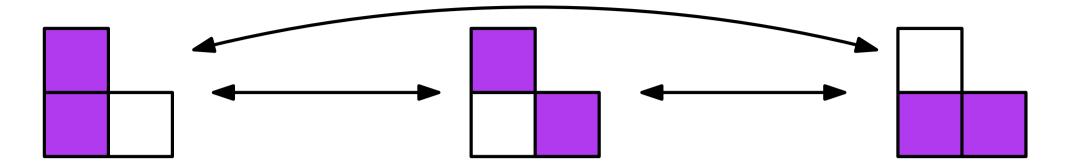
Nice properties and consequences

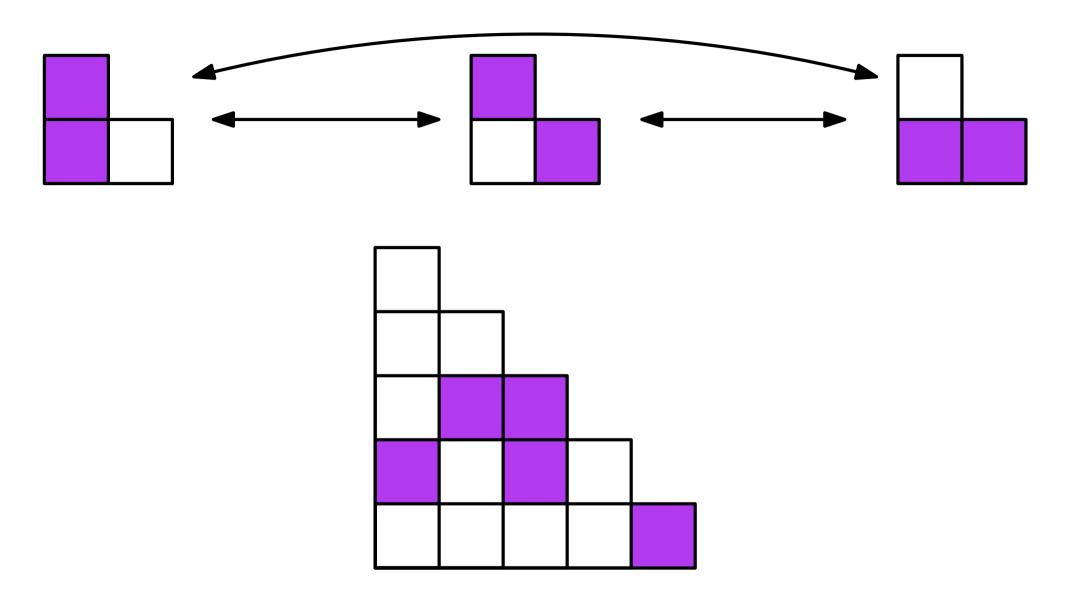
- Simple construction.
- Transports symmetries.
- Links two objects that are understood very differently \implies tools transfert.
 - ► On bases:
 - A canonical labelling of the points.
 - Maybe a characterisation by forbidden patterns?
 - ► On permutations: a dynamical system on 3-permutations (and others!) which could allow sampling.

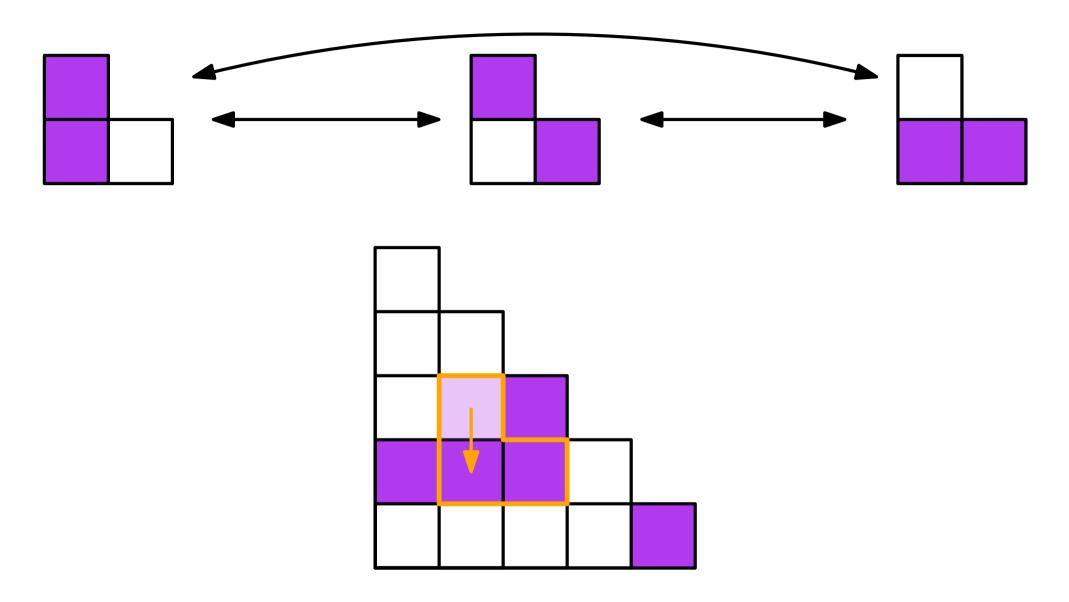
III- Solitaire game

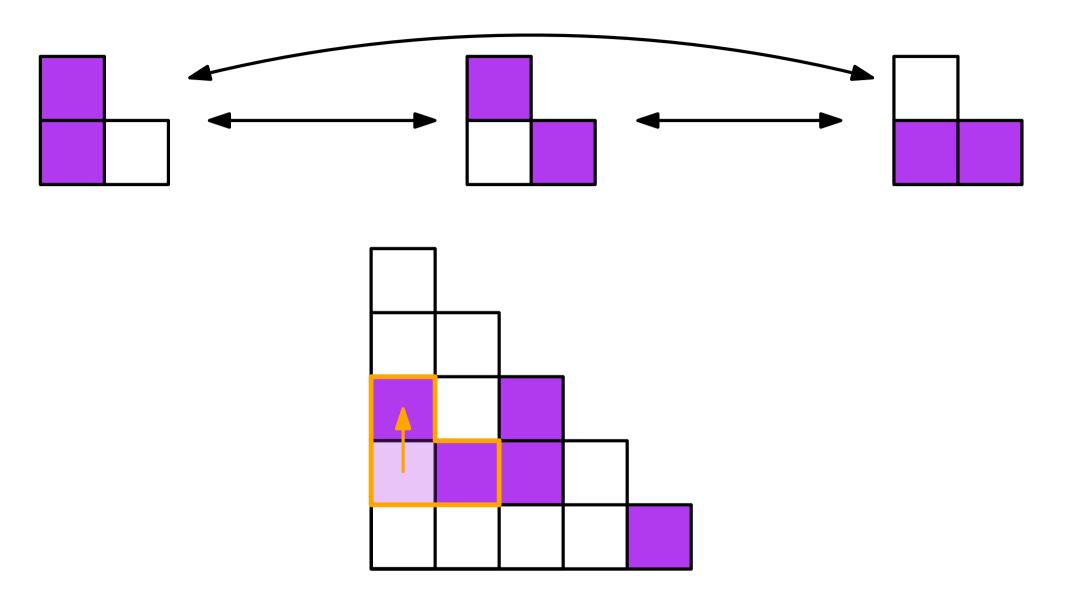


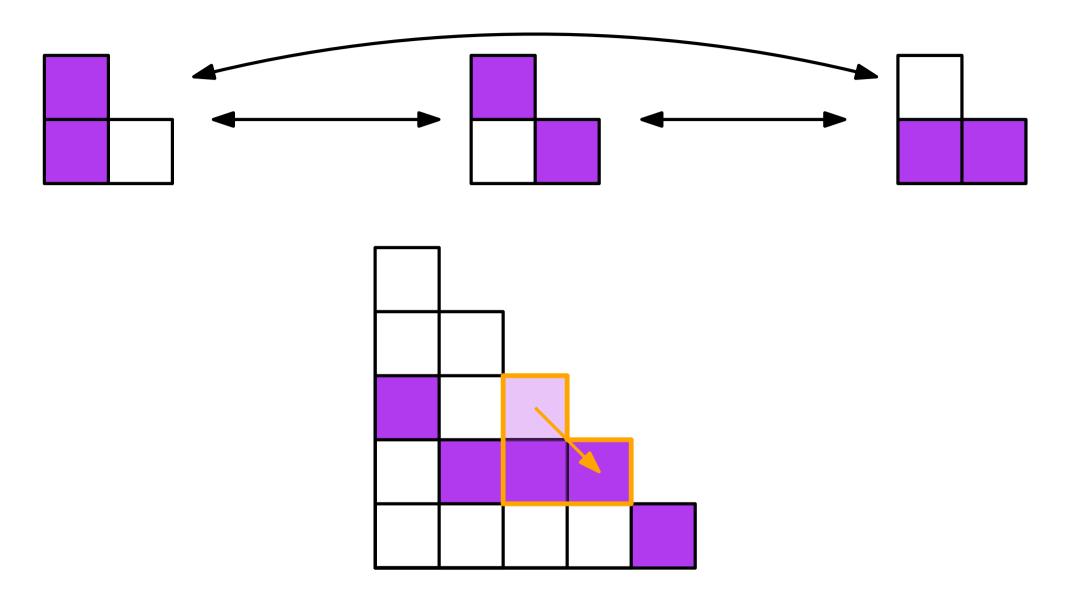


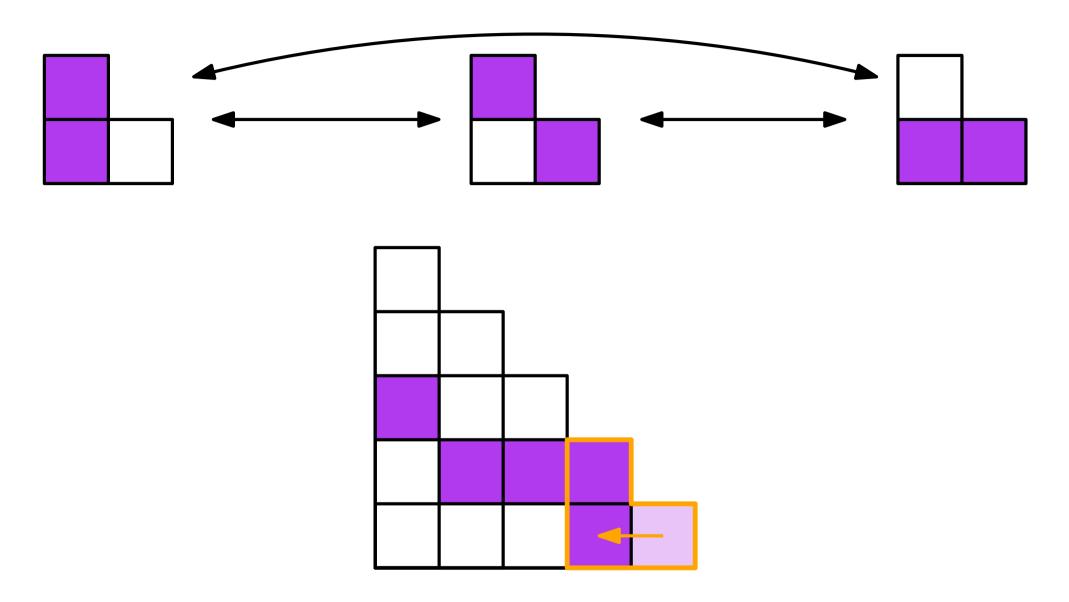


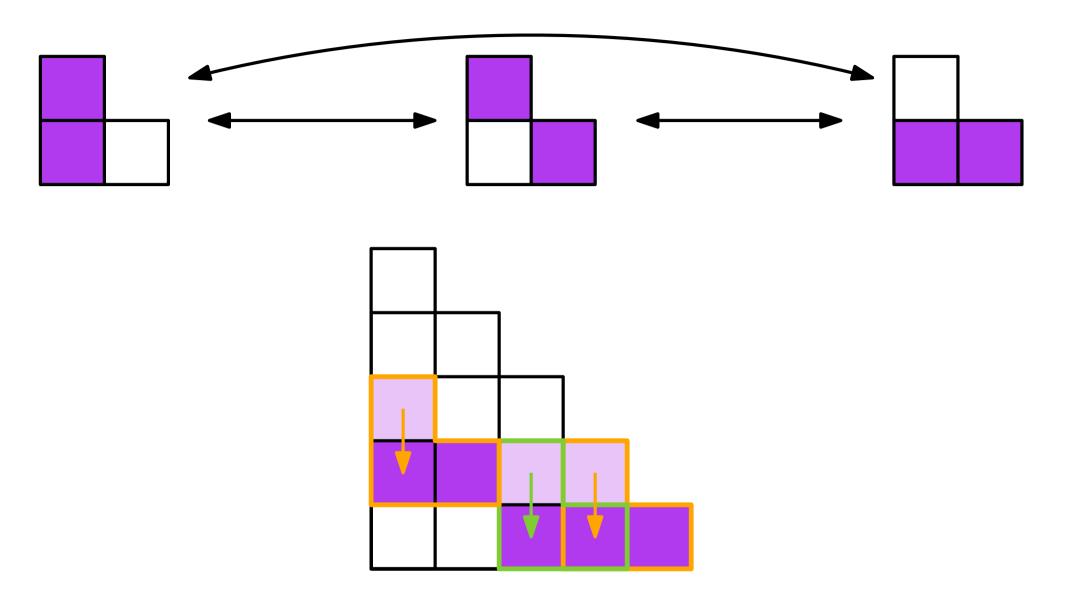


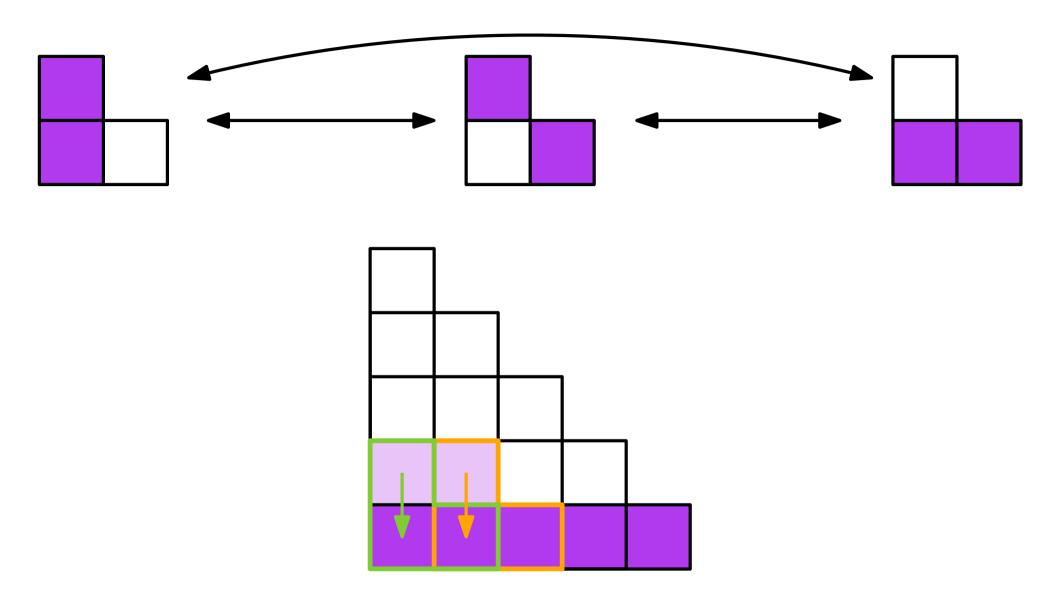






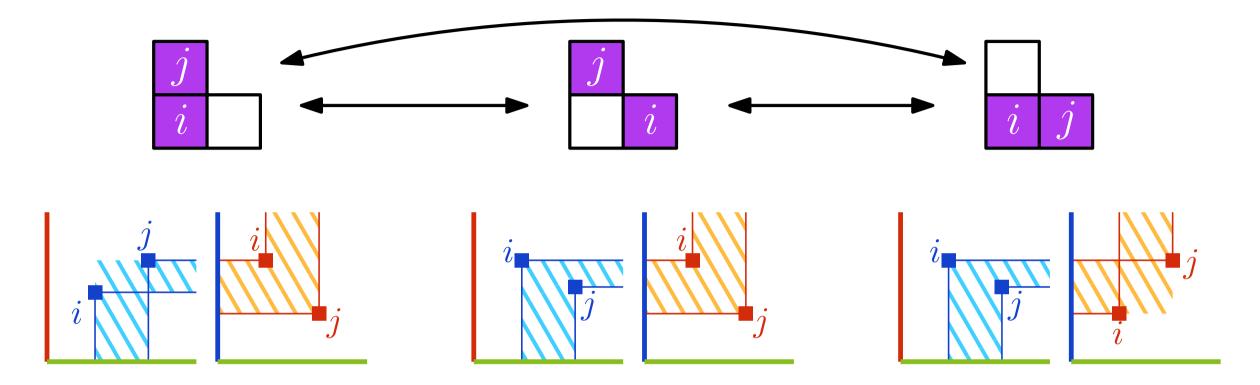


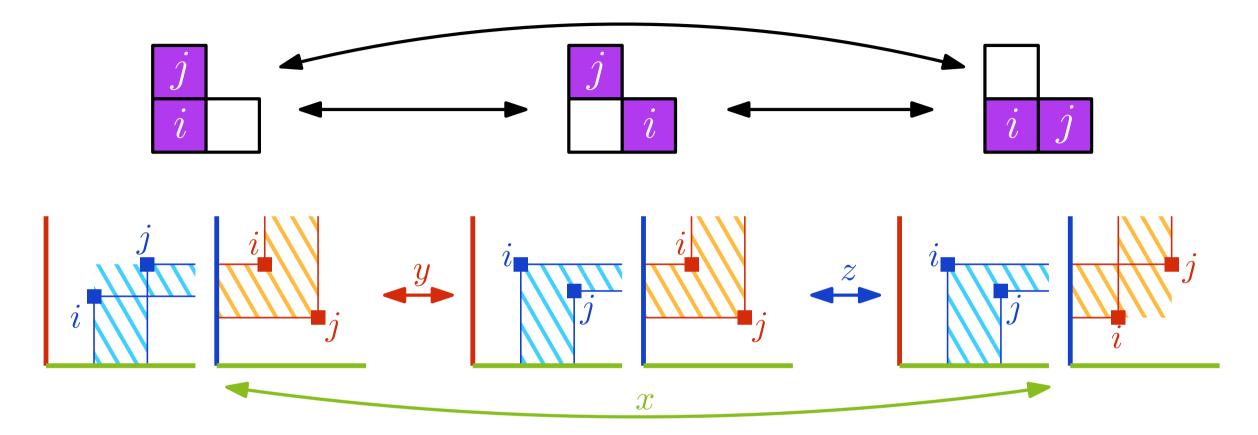


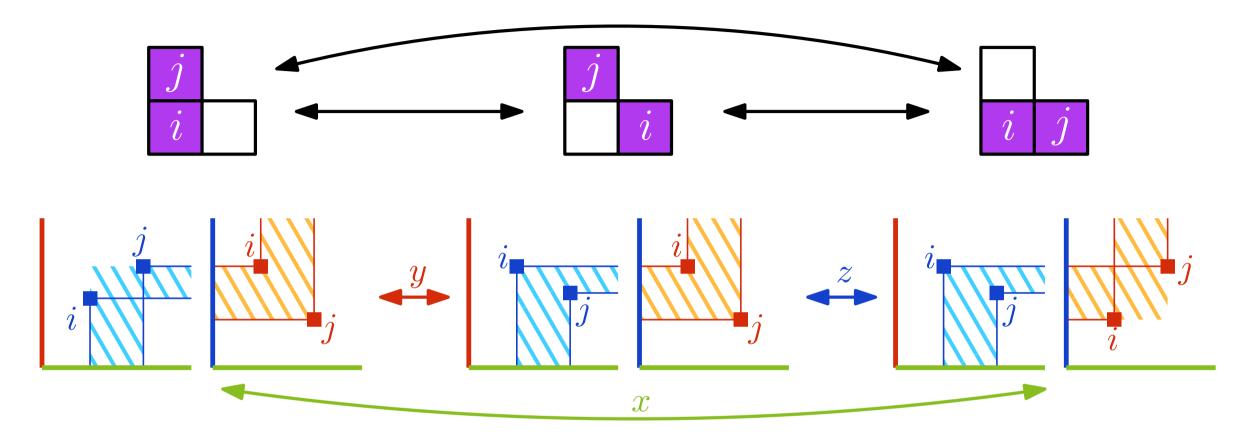




Theorem. [Salo, S. 22] The orbit of the line $[0, n-1] \times \{0\}$ consists of the triangle bases of size n.

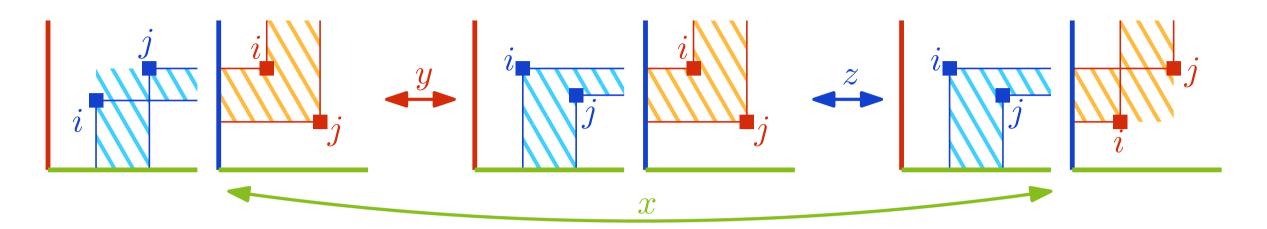


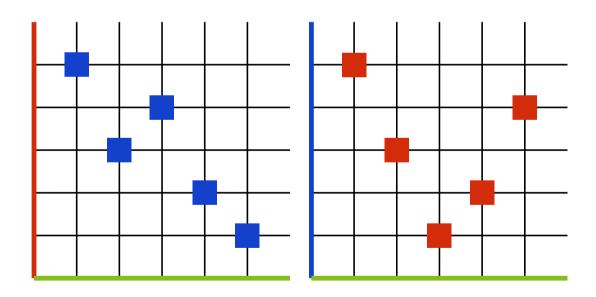


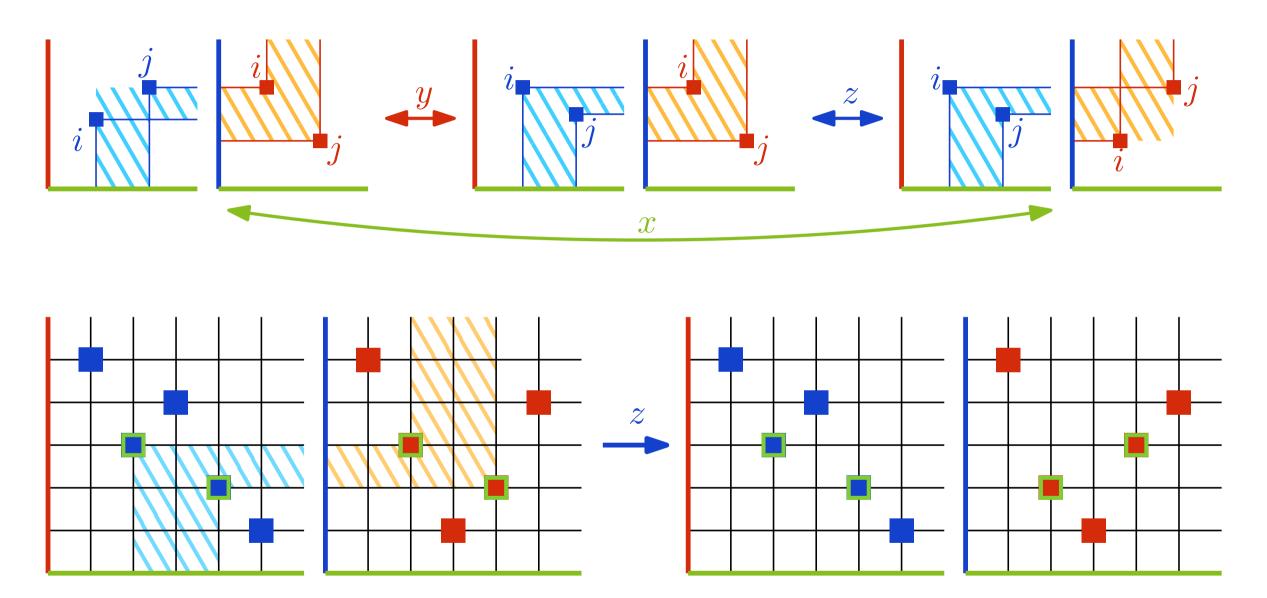


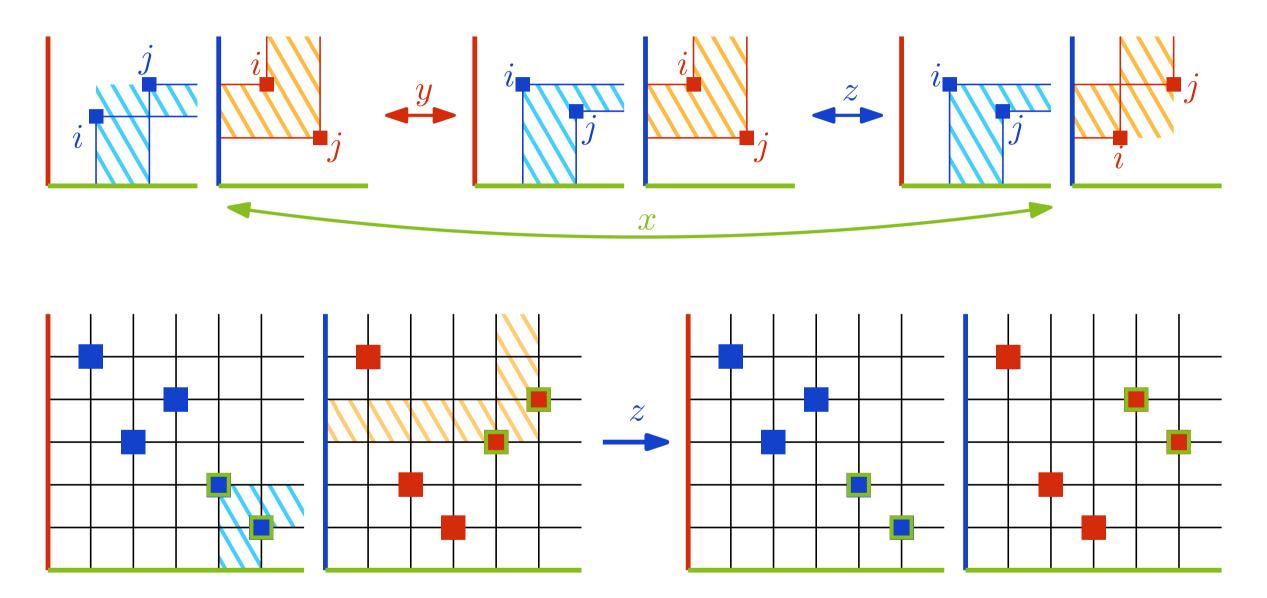
Theorem. [Salo, S. '22] The orbit of the line $[0, n-1] \times \{0\}$ is the triangle bases of size n.

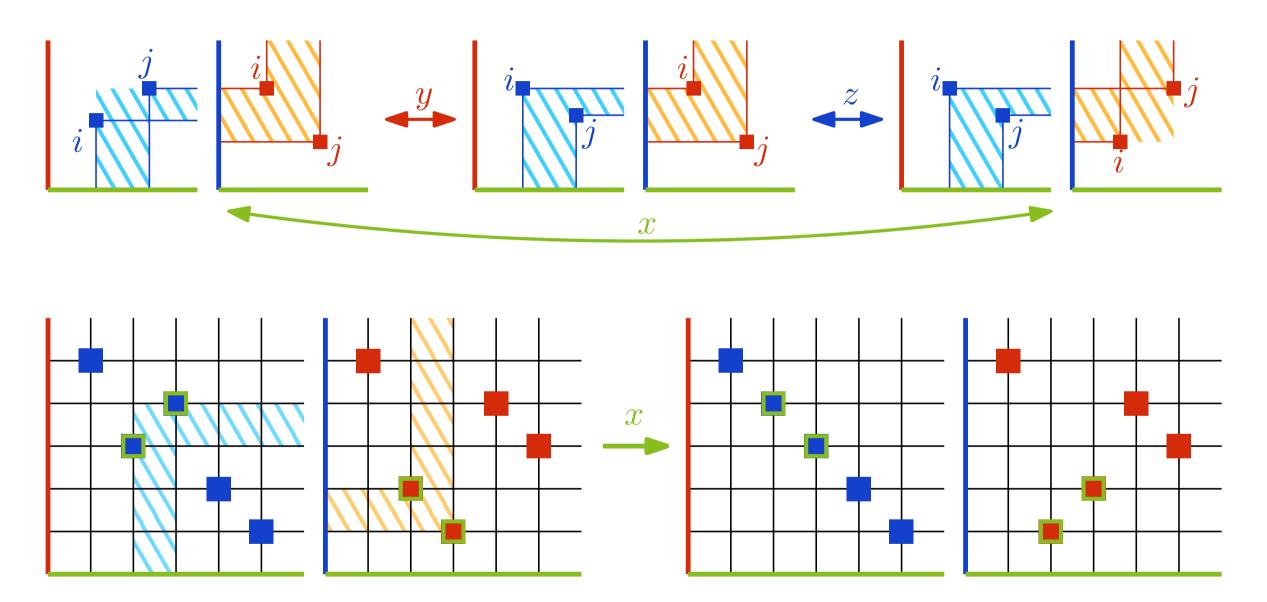
Theorem. The orbit of the line $(\overline{\mathsf{id}}, \mathsf{id})$ is $Av_n((12, 12), (312, 231))$.

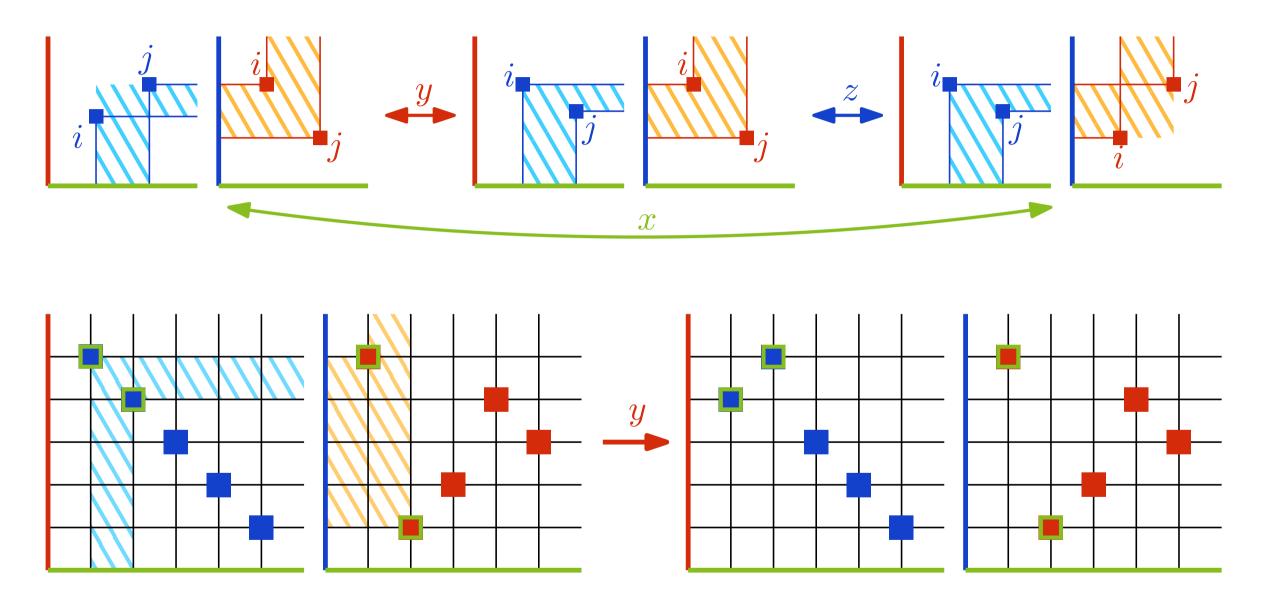


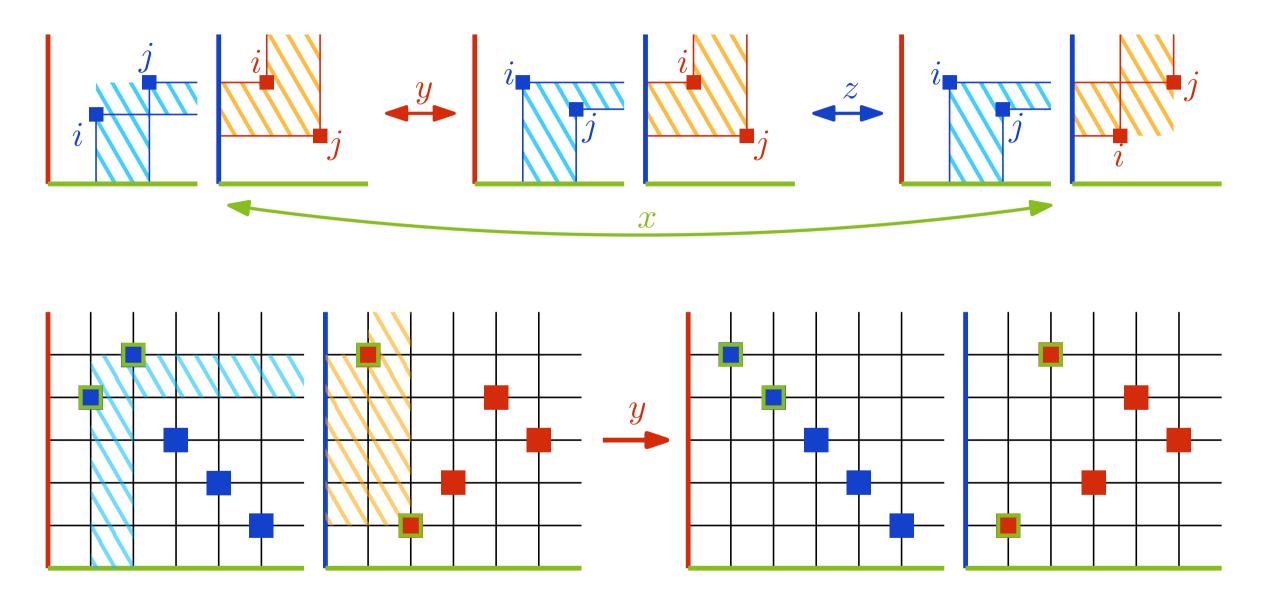


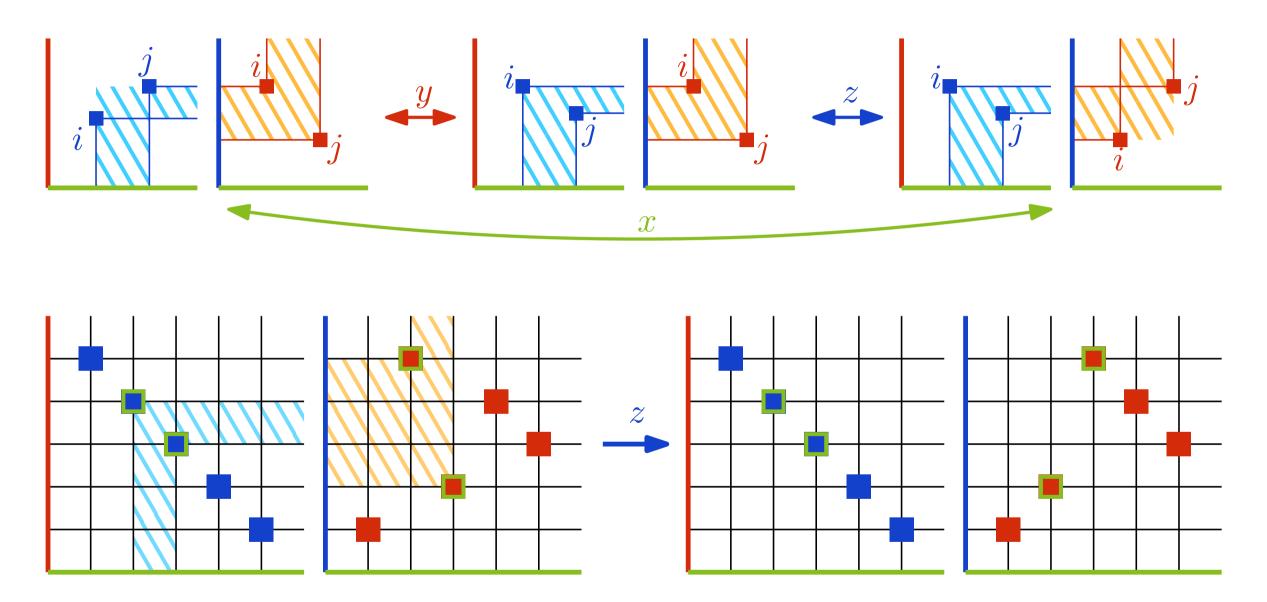


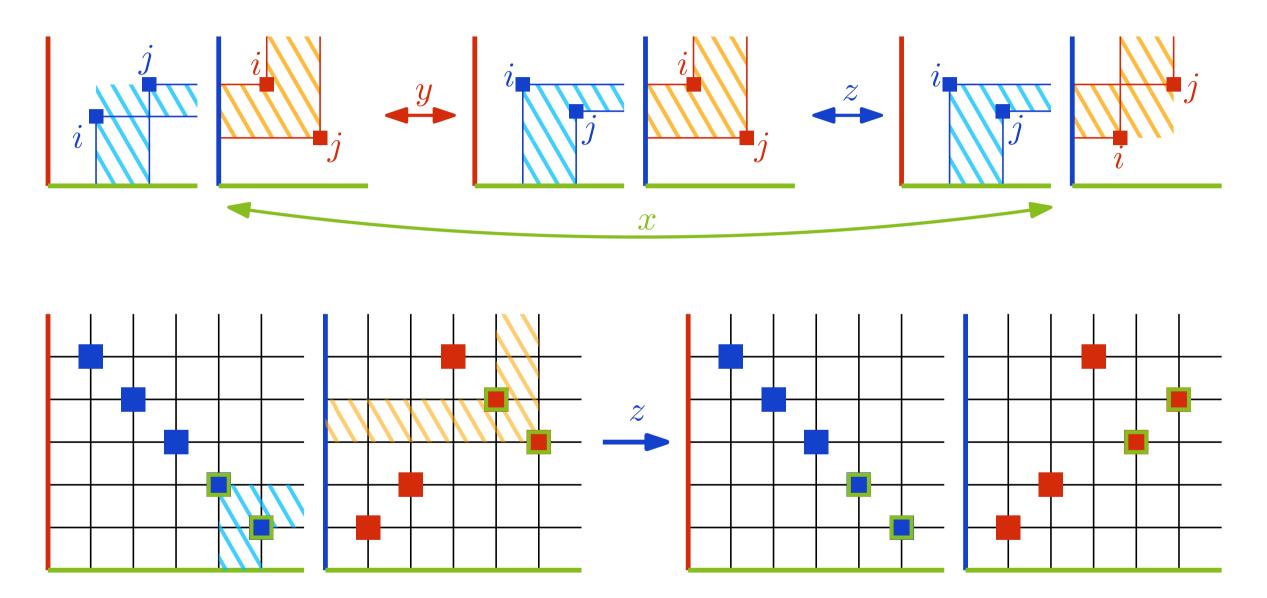


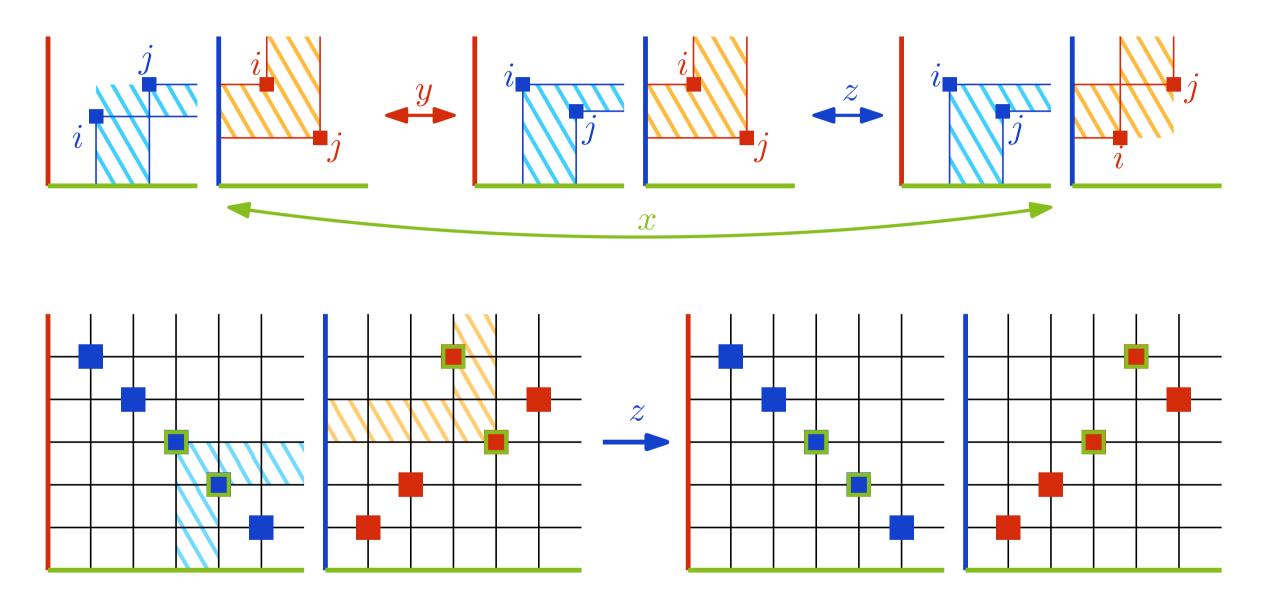


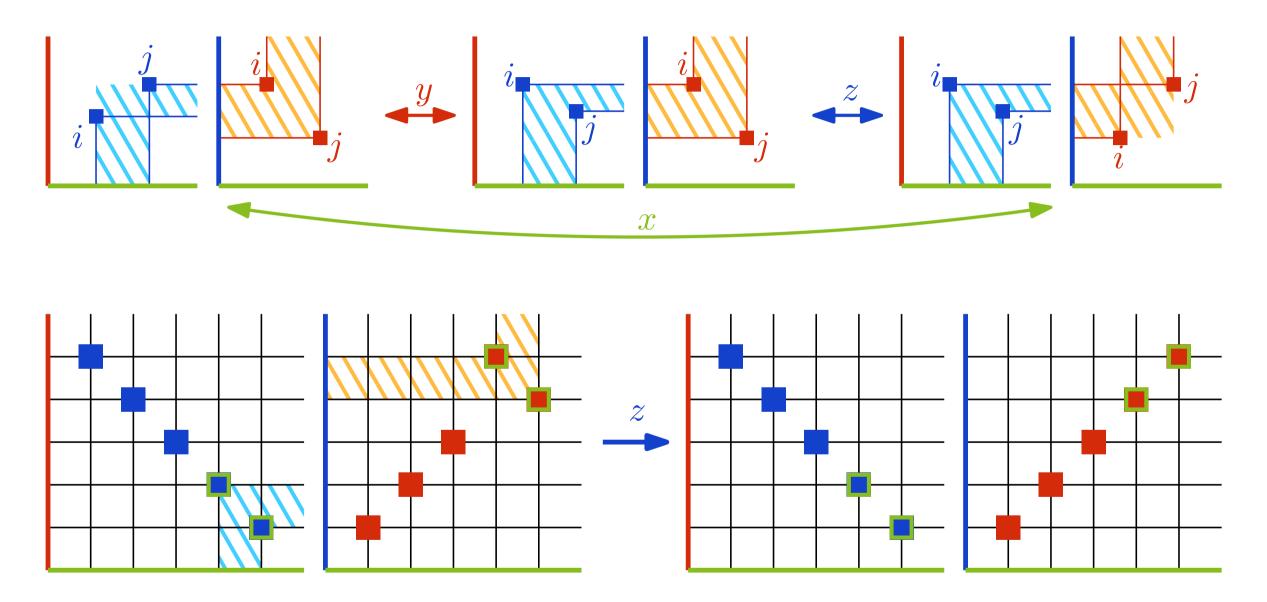












Uniform sampling?

Finding one basis is easy but enumerating them is hard \Rightarrow use the solitaire for random sampling!

Question. What is the mixing time of the solitaire?

Lemma. [Salo, S. '22] The diameter of the line orbit for the solitaire is $\Theta(n^3)$.

- No enumerative result.
 - ▶ Best known bounds : $3n! \le |\mathcal{B}_n| \le c \left(\frac{e}{2}\right)^n n^{n-\frac{5}{2}}$ with c > 0. $|Av_n((12,12),(312,231))| \le |Av_n(12,12)| = \text{number of weak Bruhat intervals (unknown)}.$
 - ► Conjecture: $|\mathcal{B}_n| \sim cn! e^{\sqrt{12n}} n^{5/12}$.

- No enumerative result.
 - ▶ Best known bounds : $3n! \le |\mathcal{B}_n| \le c\left(\frac{e}{2}\right)^n n^{n-\frac{5}{2}}$ with c>0. $|Av_n((12,12),(312,231))| \le |Av_n(12,12)| = \text{number of weak Bruhat intervals (unknown)}.$
 - ightharpoonup Conjecture: $|\mathcal{B}_n| \sim cn! e^{\sqrt{12n}} n^{5/12}$.
- The solitaire is defined on all of Av(12, 12), what are the other orbits?
- Γ is well defined on all of Av(12,12). Could it give correspondance between other pattern avoiding classes of 3-permutations and sparse configurations?
 - $ightharpoonup \Gamma$ induces a bijection on each permutation orbit with a configuration orbit.

- No enumerative result.
 - ▶ Best known bounds : $3n! \le |\mathcal{B}_n| \le c\left(\frac{e}{2}\right)^n n^{n-\frac{5}{2}}$ with c>0. $|Av_n((12,12),(312,231))| \le |Av_n(12,12)| = \text{number of weak Bruhat intervals (unknown)}.$
 - ightharpoonup Conjecture: $|\mathcal{B}_n| \sim cn! e^{\sqrt{12n}} n^{5/12}$.
- The solitaire is defined on all of Av(12, 12), what are the other orbits?
- Γ is well defined on all of Av(12, 12). Could it give correspondence between other pattern avoiding classes of 3-permutations and sparse configurations?
 - $ightharpoonup \Gamma$ induces a bijection on each permutation orbit with a configuration orbit.
- Extend Γ to higher dimensions?

- No enumerative result.
 - ▶ Best known bounds : $3n! \le |\mathcal{B}_n| \le c\left(\frac{e}{2}\right)^n n^{n-\frac{5}{2}}$ with c>0. $|Av_n((12,12),(312,231))| \le |Av_n(12,12)| = \text{number of weak Bruhat intervals (unknown)}.$
 - ightharpoonup Conjecture: $|\mathcal{B}_n| \sim cn! e^{\sqrt{12n}} n^{5/12}$.
- The solitaire is defined on all of Av(12, 12), what are the other orbits?
- Γ is well defined on all of Av(12,12). Could it give correspondance between other pattern avoiding classes of 3-permutations and sparse configurations?
 - $ightharpoonup \Gamma$ induces a bijection on each permutation orbit with a configuration orbit.
- Extend Γ to higher dimensions?

Thank you!