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Basic topological notions

Definition
Let (X ,T ) be a topological dynamical system, X a topological
space. An automorphism φ : X → X is an homeomorphism s.t.

φ ◦ T = T ◦ φ.

Aut(X ,T ) = {φ automorphism of (X ,T )}.

〈T 〉 ⊂ Z (Aut(X ,T )) ⊂ Aut(X ,T )

Q: What can we say on Aut(X ,T ) as a group? Commutative?
Amenable? What are the subgroups? the quotients?...

Q: What do dynamical properties of (X ,T ) say about properties of
Aut(X ,T ) and vice versa ?

Q: How does Aut(X ,T ) act on X? On T -invariant measures?
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Subshifts

Let A be a finite alphabet.
AZ endowed with the product topology.
The shift map

σ : AZ → AZ

(xn)n∈Z 7→ (xn+1)n∈Z

For a closed set X ⊂ AZ, shift invariant (σ(X ) = X ), a subshift
is the dynamical system (X , σ|X ).

Similarly

XF = {(xn)n ∈ AZ; xi · · · xi+m 6∈ F ∀m, i}, where F ⊂ A∗.



Subshifts

Let A be a finite alphabet.
AZ endowed with the product topology.
The shift map

σ : AZ → AZ

(xn)n∈Z 7→ (xn+1)n∈Z

For a closed set X ⊂ AZ, shift invariant (σ(X ) = X ), a subshift
is the dynamical system (X , σ|X ).
Similarly

XF = {(xn)n ∈ AZ; xi · · · xi+m 6∈ F ∀m, i}, where F ⊂ A∗.



Subshifts

XF = {(xn)n ∈ AZ; xi · · · xi+m 6∈ F ∀m, i}, where F ⊂ A∗.

Example

subshift XF of finite type (SFT): F is finite.
Ex F = {11}, golden mean shift

{(xn)n ∈ {0,1}Z; xixi+1 6= 11 ∀i}.

Sofic subshift: F is a regular language
Ex F = {01n0;n is even} even shift

{(xn)n ∈ {0,1}Z; xi · · · xi+2n+1 6= 012n0 ∀i ,n}.

Given a language L ⊂ A∗ that is extendable and factorial,

X (L) = {(xn)n ∈ AZ; xi · · · xi+m ∈ L ∀m, i}.
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Theorem (Curtis-Hedlund-Lyndon)

Any automorphism φ of (X , σ) is a cellular automaton:
There exists a local map φ̂ : A2r+1 → A s.t.

φ(x)n = φ̂(xn−r · · · xn+r ) for any n ∈ Z.

Corollary

Aut(X , σ) is countable.
Aut(X , σ) is a discrete subgroup of Homeo(X) for the uniform
convergence topology.
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Pb: Does it exist a subshift with no Aut(X , σ)-invariant measure?

¿∃ a (probability) measure µ; µ(φ−1(·)) = µ(·) ∀φ ∈ Aut(X , σ)?

If it exists, a such measure is called a characteristic measure.

A uniquely ergodic system admits a characteristic
measure.
A unique measure of maximal entropy is characteristic.
Any zero entropy subshift admits a characteristic measure.
Frisch-Tamuz (22)

Pb: find a (generic) family of subshifts with characteristic
measure including the mentioned cases.
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Minimal forbidden word

Idea: use notion of minimal forbidden word
Béal-Mignosi-Restivo-Sciortino (00)

The language of X

L(X ) = {xi · · · xj ; x ∈ X , i < j}.

Definition
For a subshift X with set of forbidden words F ⊂ A∗,
a word w ∈ F is minimal forbidden if any proper subword of w
lies in L(X ).
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Definition
For a subshift X with set of forbidden words F ⊂ A∗,
a word w ∈ F is minimal forbidden if any proper subword of w
lies in L(X ).

Any forbidden word in F contains a minimal one.

If u0 · · · un is a minimal forbidden word of X ,

The word u1 · · · un−1 ∈ L(X ) is the middle of the forbidden
word u0u1 · · · un−1un.
It is a bispecial word: i.e. ∃a1 6= a2,b1 6= b2 ∈ A s.t.

a1u1 · · · un−1b1 and a2u1 · · · un−1b2 ∈ L(X )



Characterization of minimal forbidden words

The extension graph of u ∈ L(X ) is the bipartite graph E(u)
where

left vertices are {a ∈ A;au ∈ L(X )};
right vertices are {b ∈ A;ub ∈ L(X )};
edges are {(a,b) | aub ∈ L(X )}.
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The extension graph of u ∈ L(X ) is the bipartite graph E(u)
where

left vertices are {a ∈ A;au ∈ L(X )};
right vertices are {b ∈ A;ub ∈ L(X )};
edges are {(a,b) | aub ∈ L(X )}.

Example
x = 01001010010010100101001001010010 · · ·

E(010)
0

1

0

1



Characterization of minimal forbidden words

The extension graph of u ∈ L(X ) is the bipartite graph E(u)
where

left vertices are {a ∈ A;au ∈ L(X )};
right vertices are {b ∈ A;ub ∈ L(X )};
edges are {(a,b) | aub ∈ L(X )}.

Proposition

A word u ∈ L(X ) is the middle of a minimal forbidden word
⇐⇒ its bipartite extension graph E(u) is not complete.



M(X ) denote the set of minimal forbidden words of X .

For SFT,M(XF ) ⊂ F is finite.
M(X ) = {11} for the golden mean SFT

For sofic subshift,M(X ) is a regular language
Béal et al.

M(X ) = {012n0;n ∈ N} for the even shift
For a general subshift X ,

X ={(xn)n ∈ AZ; xi · · · xi+m 6∈ M(X ) ∀m, i}
L(X ) =A∗ \ A∗M(X )A∗

M(X ) uniquely characterizes L(X ).
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Definition (Cyr-Kra)
A subshift X is language stable (LS) if the set

LM(X ) = {n ∈ N;M(X ) ∩ An 6= ∅}

has a zero lower uniform density, i.e.

lim
n→+∞

min
t≥0

1
n
|LM(X ) ∩ {t + 1, . . . , t + n}| = 0.

Equivalently, the distance between 2 consecutive elements in
LM(X ) is unbounded.
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Prouhet-Thue-Morse subshift is LS τ : 1 7→ 10,0 7→ 01
L(X ) = {subword of τn(0),n ≥ 0}.
Bispecial word are ε,1,0, τn(10), τn(01), τn(101), τn(010)

LM(X ) ⊂ {0,1,2n,2n3 n ∈ N}+ 2.



Idea under the definition

For any n ∈ N, Xn := X∪n
`=1M(X)∩A` is an SFT,

X =
⋂
n≥0

Xn.

The sequence (Xn)n≥0 is the SFT cover of X .

L(Xn+1) ⊂ L(Xn).
L(Xn+1) = L(Xn) when n + 1 6∈ LM(X ).
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For any n ∈ N, Xn := X∪n
`=1M(X)∩A` is an SFT,

X =
⋂
n≥0

Xn.

The sequence (Xn)n≥0 is the SFT cover of X .

L(Xn+1) ⊂ L(Xn).
L(Xn+1) = L(Xn) when n + 1 6∈ LM(X ).

X is well approximated by SFT when X is language stable.



Theorem
The family of language stable subshifts is

invariant under conjugacies
Béal-Mignosi-Restivo-Sciortino (00)

generic
Cyr-Kra (21)



Complexity and language stable

Complexity pX (n) = |L(X ) ∩ An|, entropy h = limn
log(pX (n))

n .

Proposition (CKP)

Any entropy h ≥ 0 is realizable by an LS subshift.
There exist LS subshifts with arbitrary polynomial
complexity.
If X is an aperiodic subshift with non-superlinear
complexity, i.e.

lim inf
n→+∞

pX (n)
n

< +∞,

then it is language stable.

∃ non LS subshift with arbitrary entropy.
∃ non LS subshift with n log log n complexity

lim sup
n→+∞

pX (n)
n log log n

< +∞.
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uniform bound on number of special words of a given
length
Fine and Wilf theorem (if X is aperiodic)

This provides the lengths of bispecial words form a zero density
set.
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set.



Complexity and language stable

Complexity pX (n) = |L(X ) ∩ An|, entropy h = limn
log(pX (n))

n .

Proposition (CKP)
Any entropy h ≥ 0 is realizable by an LS subshift.
There exist LS subshifts with arbitrary polynomial
complexity.
If X is an aperiodic subshift with non-superlinear
complexity, i.e.

lim inf
n→+∞

pX (n)
n

< +∞,

then it is language stable.

The set

{β > 1; the β − shift is LS} has full Lebesgue measure.



Ergodic properties and Language Stable

A subshift X is minimal if it contains no proper subshift.

Any sequence x ∈ X is uniformly recurrent:

∀n ∈ N,∃MX (n) ∈ N s.t.

∀v ∈ L(X ) ∩ An occurs in any u ∈ L(X ) ∩ AMX (n).

Proposition (CKP)
A minimal subshift X s.t.

MX (n) = O(nα) for some α <
1 +
√

3
2

= 1.36 . . .

is LS.
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Ergodic properties and Language Stable

Proposition (CKP)
∃ LS subshift X , where X is minimal and with arbitrary
dimension group C(X ,Z)/〈f − f ◦ σ〉.
In particular,

the set of σ-invariant probability measure

{µ;µ(σ−1·) = µ(·)},

the values µ(C) of clopens C,
can be chosen arbitrary.

Proof is obtained thanks a (technical) condition on S-adic
morphisms

circular and biprefix
growth condition on length of image of letters
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Ergodic properties and Language Stable

Proposition (CKP)
Any speed-up of a minimal LS susbshift X, is LS:
For any continuous p : X → N, the system (X , σp(·)(·)) is LS.

e.g.: induced systems of minimal LS are LS.

∃ minimal subshift that is not LS Pavlov
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On automorphisms of LS subshifts

Aut(X , σ) = {φ : X → X ;φ ◦ σ = σ ◦ φ} 3 σ.

Theorem (Cyr-Kra)

If X is LS, then the Aut(X , σ)-action admits an invariant
measure:

∃ measure µ; µ(φ−1(·)) = µ(·) ∀φ ∈ Aut(X , σ).
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On automorphisms of LS subshifts

Aut(X , σ) = {φ : X → X ;φ ◦ σ = σ ◦ φ} 3 σ.

Theorem (Cyr-Kra)

If X is LS, then the Aut(X , σ)-action admits an invariant
measure:

∃ measure µ; µ(φ−1(·)) = µ(·) ∀φ ∈ Aut(X , σ).

Theorem (Cyr-Kra-P)

Assume that X is LS and the gaps in LM(X ) growth fast
enough (explicit)
Then for any factor Y of X the Aut(Y , σ)-action admits an
invariant measure:

∃ measure µ; µ(φ−1(·)) = µ(·) ∀φ ∈ Aut(Y , σ).



Restrictions on LS subshifts

Aut(X , σ) = {φ : X → X ;φ ◦ σ = σ ◦ φ} 3 σ.

Theorem (Cyr-Kra-P)

If X is irreducible and LS, then Aut(X , σ) is a LEF group



Restrictions on LS subshifts

Aut(X , σ) = {φ : X → X ;φ ◦ σ = σ ◦ φ} 3 σ.

Theorem (Cyr-Kra-P)

If X is irreducible and LS, then Aut(X , σ) is a LEF group

Gordon-Vershik
The group G is Locally Embeddable into Finite groups (LEF) if
for every finite set K ⊂ G, there exists a finite group H and a
map ϕ : G→ H such that the following hold:

1 ϕ(k1k2) = ϕ(k1)ϕ(k2) for all k1, k2 ∈ K

2 the restriction of ϕ to K is injective.

LEF not LEF
Zd ,Fd ,Q 〈a,b;banb−1 = am〉 n > m ≥ 2

resid. finite Thompson group V&T



Restrictions on LS subshifts

Aut(X , σ) = {φ : X → X ;φ ◦ σ = σ ◦ φ} 3 σ.

Theorem (Cyr-Kra-P)

If X is irreducible and LS, then Aut(X , σ) is a LEF group

There exists subshifts where Aut(X , σ) is not LEF.


