On language stable subshifts

Samuel Petite with V. Cyr, B. Kra

LAMFA UMR CNRS Université de Picardie Jules Verne, France

June 19, 2025

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Basic topological notions

Definition

Let (X, T) be a topological dynamical system, X a topological space. An automorphism $\phi: X \to X$ is an homeomorphism s.t.

$$\phi \circ T = T \circ \phi.$$

Aut(X, T) = { ϕ automorphism of (X, T)}.

ヘロト 人間ト 人造ト 人造ト 一注

Basic topological notions

Definition

Let (X, T) be a topological dynamical system, X a topological space. An automorphism $\phi: X \to X$ is an homeomorphism s.t.

$$\phi \circ T = T \circ \phi.$$

Aut(X, T) = { ϕ automorphism of (X, T)}.

 $\langle T \rangle \subset Z(\operatorname{Aut}(X,T)) \subset \operatorname{Aut}(X,T)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Basic topological notions

Definition

Let (X, T) be a topological dynamical system, X a topological space. An automorphism $\phi: X \to X$ is an homeomorphism s.t.

$$\phi \circ T = T \circ \phi.$$

Aut(X, T) = { ϕ automorphism of (X, T)}.

 $\langle T \rangle \subset Z(\operatorname{Aut}(X,T)) \subset \operatorname{Aut}(X,T)$

- <u>Q</u>: What can we say on Aut(X, T) as a group? Commutative? Amenable? What are the subgroups? the quotients?...
- <u>Q</u>: What do dynamical properties of (X, T) say about properties of Aut(X, T) and vice versa ?
- Q: How does Aut(X, T) act on X? On T-invariant measures?

Subshifts

Let *A* be a finite alphabet. $A^{\mathbb{Z}}$ endowed with the product topology. The shift map

$$\sigma: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$$
$$(x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}}$$

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant ($\sigma(X) = X$), a subshift is the dynamical system $(X, \sigma_{|X})$.

うつん 川 ・ ・ エッ・ ・ ・ ・ ・ しゃ

Subshifts

Let *A* be a finite alphabet. $A^{\mathbb{Z}}$ endowed with the product topology. The shift map

$$\sigma: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$$
$$(x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}}$$

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant ($\sigma(X) = X$), a subshift is the dynamical system ($X, \sigma_{|X}$). Similarly

$$X_{\mathcal{F}} = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

うつん 川 ・ ・ エッ・ ・ ・ ・ ・ しゃ

$$X_{\mathcal{F}} = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Example

$$X_{\mathcal{F}} = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

Example

• subshift $X_{\mathcal{F}}$ of finite type (SFT): \mathcal{F} is finite. Ex $\mathcal{F} = \{11\}$, golden mean shift

$$\{(x_n)_n \in \{0,1\}^{\mathbb{Z}}; x_i x_{i+1} \neq 11 \quad \forall i\}.$$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

$$X_{\mathcal{F}} = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

Example

• subshift $X_{\mathcal{F}}$ of finite type (SFT): \mathcal{F} is finite. Ex $\mathcal{F} = \{11\}$, golden mean shift

$$\{(x_n)_n \in \{0,1\}^{\mathbb{Z}}; x_i x_{i+1} \neq 11 \quad \forall i\}.$$

• Sofic subshift: \mathcal{F} is a regular language Ex $\mathcal{F} = \{01^n0; n \text{ is even}\}$ even shift

$$\{(x_n)_n \in \{0,1\}^{\mathbb{Z}}; x_i \cdots x_{i+2n+1} \neq 01^{2n}0 \quad \forall i, n\}.$$

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

$$X_{\mathcal{F}} = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

Example

• subshift $X_{\mathcal{F}}$ of finite type (SFT): \mathcal{F} is finite. Ex $\mathcal{F} = \{11\}$, golden mean shift

$$\{(x_n)_n \in \{0,1\}^{\mathbb{Z}}; x_i x_{i+1} \neq 11 \quad \forall i\}.$$

• Sofic subshift: \mathcal{F} is a regular language Ex $\mathcal{F} = \{01^n0; n \text{ is even}\}$ even shift

$$\{(x_n)_n \in \{0,1\}^{\mathbb{Z}}; x_i \cdots x_{i+2n+1} \neq 01^{2n}0 \quad \forall i, n\}.$$

• Given a language $\mathcal{L} \subset A^*$ that is extendable and factorial,

$$X(\mathcal{L}) = \{ (x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \in \mathcal{L} \quad \forall m, i \}.$$

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

Theorem (Curtis-Hedlund-Lyndon)

Any automorphism ϕ of (X, σ) is a cellular automaton: There exists a local map $\hat{\phi} \colon A^{2r+1} \to A \text{ s.t.}$

$$\phi(\mathbf{x})_n = \hat{\phi}(\mathbf{x}_{n-r}\cdots\mathbf{x}_{n+r})$$
 for any $n \in \mathbb{Z}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Theorem (Curtis-Hedlund-Lyndon)

Any automorphism ϕ of (X, σ) is a cellular automaton: There exists a local map $\hat{\phi} \colon A^{2r+1} \to A \ s.t.$

$$\phi(\mathbf{x})_{\mathbf{n}} = \hat{\phi}(\mathbf{x}_{\mathbf{n}-\mathbf{r}}\cdots\mathbf{x}_{\mathbf{n}+\mathbf{r}}) \text{ for any } \mathbf{n} \in \mathbb{Z}.$$

Corollary

Aut(X, σ) is countable. Aut(X, σ) is a discrete subgroup of Homeo(X) for the uniform convergence topology.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

i∃ a (probability) measure μ ; $\mu(\phi^{-1}(\cdot)) = \mu(\cdot)$ ∀ $\phi \in Aut(X, \sigma)$?

i∃ a (probability) measure μ ; $\mu(\phi^{-1}(\cdot)) = \mu(\cdot)$ ∀ $\phi \in Aut(X, \sigma)$?

If it exists, a such measure is called a characteristic measure.

i∃ a (probability) measure μ ; $\mu(\phi^{-1}(\cdot)) = \mu(\cdot)$ ∀ $\phi \in Aut(X, \sigma)$?

If it exists, a such measure is called a characteristic measure.

• A uniquely ergodic system admits a characteristic measure.

i∃ a (probability) measure μ ; $\mu(\phi^{-1}(\cdot)) = \mu(\cdot)$ ∀ $\phi \in Aut(X, \sigma)$?

If it exists, a such measure is called a characteristic measure.

- A uniquely ergodic system admits a characteristic measure.
- A unique measure of maximal entropy is characteristic.

i∃ a (probability) measure μ ; $\mu(\phi^{-1}(\cdot)) = \mu(\cdot)$ ∀ $\phi \in Aut(X, \sigma)$?

If it exists, a such measure is called a characteristic measure.

- A uniquely ergodic system admits a characteristic measure.
- A unique measure of maximal entropy is characteristic.
- Any zero entropy subshift admits a characteristic measure. Frisch-Tamuz (22)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

i∃ a (probability) measure μ ; $\mu(\phi^{-1}(\cdot)) = \mu(\cdot)$ ∀ $\phi \in Aut(X, \sigma)$?

If it exists, a such measure is called a characteristic measure.

- A uniquely ergodic system admits a characteristic measure.
- A unique measure of maximal entropy is characteristic.
- Any zero entropy subshift admits a characteristic measure. Frisch-Tamuz (22)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

i∃ a (probability) measure μ ; $\mu(\phi^{-1}(\cdot)) = \mu(\cdot)$ ∀ $\phi \in Aut(X, \sigma)$?

If it exists, a such measure is called a characteristic measure.

- A uniquely ergodic system admits a characteristic measure.
- A unique measure of maximal entropy is characteristic.
- Any zero entropy subshift admits a characteristic measure. Frisch-Tamuz (22)

<u>Pb</u>: find a (generic) family of subshifts with characteristic measure including the mentioned cases.

Idea: use notion of minimal forbidden word Béal-Mignosi-Restivo-Sciortino (00)

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Idea: use notion of minimal forbidden word Béal-Mignosi-Restivo-Sciortino (00) The language of *X*

$$\mathcal{L}(X) = \{x_i \cdots x_j; x \in X, i < j\}.$$

Definition

For a subshift X with set of forbidden words $\mathcal{F} \subset A^*$, a word $w \in \mathcal{F}$ is minimal forbidden if any proper subword of w lies in $\mathcal{L}(X)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

For a subshift X with set of forbidden words $\mathcal{F} \subset A^*$, a word $w \in \mathcal{F}$ is minimal forbidden if any proper subword of w lies in $\mathcal{L}(X)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ クタペ

Any forbidden word in \mathcal{F} contains a minimal one.

For a subshift X with set of forbidden words $\mathcal{F} \subset A^*$, a word $w \in \mathcal{F}$ is minimal forbidden if any proper subword of w lies in $\mathcal{L}(X)$.

Any forbidden word in \mathcal{F} contains a minimal one.

If $u_0 \cdots u_n$ is a minimal forbidden word of *X*,

 $u_0u_1\cdots u_{n-1}u_n \notin \mathcal{L}(X)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

For a subshift X with set of forbidden words $\mathcal{F} \subset A^*$, a word $w \in \mathcal{F}$ is minimal forbidden if any proper subword of w lies in $\mathcal{L}(X)$.

Any forbidden word in \mathcal{F} contains a minimal one. If $u_0 \cdots u_n$ is a minimal forbidden word of X.

$$\underbrace{u_0 \quad u_1 \cdots u_{n-1}}_{\in \mathcal{L}(X)} u_n \notin \mathcal{L}(X)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For a subshift X with set of forbidden words $\mathcal{F} \subset A^*$, a word $w \in \mathcal{F}$ is minimal forbidden if any proper subword of w lies in $\mathcal{L}(X)$.

Any forbidden word in \mathcal{F} contains a minimal one. If $u_0 \cdots u_n$ is a minimal forbidden word of X,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

For a subshift X with set of forbidden words $\mathcal{F} \subset A^*$, a word $w \in \mathcal{F}$ is minimal forbidden if any proper subword of w lies in $\mathcal{L}(X)$.

Any forbidden word in \mathcal{F} contains a minimal one.

If $u_0 \cdots u_n$ is a minimal forbidden word of *X*,

- The word $u_1 \cdots u_{n-1} \in \mathcal{L}(X)$ is the middle of the forbidden word $u_0 u_1 \cdots u_{n-1} u_n$.
- It is a bispecial word: i.e. $\exists a_1 \neq a_2, b_1 \neq b_2 \in A$ s.t.

$$a_1u_1\cdots u_{n-1}b_1$$
 and $a_2u_1\cdots u_{n-1}b_2 \in \mathcal{L}(X)$

The extension graph of $u \in \mathcal{L}(X)$ is the bipartite graph $\mathcal{E}(u)$ where

うつん 川 ・ ・ エッ・ ・ ・ ・ しゃ

- left vertices are $\{a \in A; au \in \mathcal{L}(X)\};$
- right vertices are $\{b \in A; ub \in \mathcal{L}(X)\};$
- edges are $\{(a, b) \mid aub \in \mathcal{L}(X)\}$.

The extension graph of $u \in \mathcal{L}(X)$ is the bipartite graph $\mathcal{E}(u)$ where

- left vertices are $\{a \in A; au \in \mathcal{L}(X)\};$
- right vertices are $\{b \in A; ub \in \mathcal{L}(X)\};$
- edges are $\{(a, b) \mid aub \in \mathcal{L}(X)\}$.

Example

 $\mathbf{x} = 010010100100100101001001010010 \cdots$

 $\mathcal{E}(010)$ 0 - 0 \times 1 - 1

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Characterization of minimal forbidden words

The extension graph of $u \in \mathcal{L}(X)$ is the bipartite graph $\mathcal{E}(u)$ where

- left vertices are $\{a \in A; au \in \mathcal{L}(X)\};$
- right vertices are $\{b \in A; ub \in \mathcal{L}(X)\};$
- edges are $\{(a, b) \mid aub \in \mathcal{L}(X)\}$.

Proposition

A word $u \in \mathcal{L}(X)$ is the middle of a minimal forbidden word \iff its bipartite extension graph $\mathcal{E}(u)$ is not complete.

(ロト (個) (E) (E) (E) (O)

• For SFT,
$$\mathcal{M}(X_{\mathcal{F}}) \subset \mathcal{F}$$
 is finite.

 $\mathcal{M}(X) = \{11\}$ for the golden mean SFT

• For SFT,
$$\mathcal{M}(X_{\mathcal{F}}) \subset \mathcal{F}$$
 is finite.

 $\mathcal{M}(X) = \{11\}$ for the golden mean SFT

• For sofic subshift, $\mathcal{M}(X)$ is a regular language

Béal et al.

 $\mathcal{M}(X) = \{01^{2n}0; n \in \mathbb{N}\}$ for the even shift

• For SFT,
$$\mathcal{M}(X_{\mathcal{F}}) \subset \mathcal{F}$$
 is finite.

 $\mathcal{M}(X) = \{11\}$ for the golden mean SFT

• For sofic subshift, $\mathcal{M}(X)$ is a regular language

Béal et al.

うつん 川 ・ ・ エッ・ ・ ・ ・ しゃ

 $\mathcal{M}(X) = \{01^{2n}0; n \in \mathbb{N}\}$ for the even shift

For a general subshift X,

$$X = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{M}(X) \quad \forall m, i\}$$

 $\mathcal{L}(X) = A^* \setminus A^* \mathcal{M}(X) A^*$

 $\mathcal{M}(X)$ uniquely characterizes $\mathcal{L}(X)$.

Definition (Cyr-Kra)

A subshift X is language stable (LS) if the set

$$L\mathcal{M}(X) = \{n \in \mathbb{N}; \mathcal{M}(X) \cap A^n \neq \emptyset\}$$

has a zero lower uniform density, i.e.

$$\lim_{n\to+\infty}\min_{t\geq 0}\frac{1}{n}|L\mathcal{M}(X)\cap\{t+1,\ldots,t+n\}|=0.$$

Equivalently, the distance between 2 consecutive elements in $L\mathcal{M}(X)$ is unbounded.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Definition (Cyr-Kra)

A subshift X is language stable (LS) if the set

$$\mathcal{LM}(X) = \{ n \in \mathbb{N}; \mathcal{M}(X) \cap A^n \neq \emptyset \}$$

has a zero lower uniform density, i.e.

$$\lim_{n\to+\infty}\min_{t\geq 0}\frac{1}{n}|L\mathcal{M}(X)\cap\{t+1,\ldots,t+n\}|=0.$$

Equivalently, the distance between 2 consecutive elements in $L\mathcal{M}(X)$ is unbounded.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

• SFT are language stable.

Definition (Cyr-Kra)

A subshift X is language stable (LS) if the set

$$\mathcal{LM}(X) = \{ n \in \mathbb{N}; \mathcal{M}(X) \cap A^n
eq \emptyset \}$$

has a zero lower uniform density, i.e.

$$\lim_{n\to+\infty}\min_{t\geq 0}\frac{1}{n}|L\mathcal{M}(X)\cap\{t+1,\ldots,t+n\}|=0.$$

Equivalently, the distance between 2 consecutive elements in $L\mathcal{M}(X)$ is unbounded.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

• SFT are language stable.

• Sofic shifts (not SFT) are **not** language stable.
A subshift X is language stable (LS) if the set

$$\mathcal{LM}(X) = \{ n \in \mathbb{N}; \mathcal{M}(X) \cap A^n \neq \emptyset \}$$

has a zero lower uniform density, i.e.

$$\lim_{n\to+\infty}\min_{t\geq 0}\frac{1}{n}|\mathcal{LM}(X)\cap\{t+1,\ldots,t+n\}|=0.$$

Equivalently, the distance between 2 consecutive elements in $L\mathcal{M}(X)$ is unbounded.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Prouhet-Thue-Morse subshift is LS

A subshift X is language stable (LS) if the set

$$\mathcal{LM}(X) = \{ n \in \mathbb{N}; \mathcal{M}(X) \cap A^n \neq \emptyset \}$$

has a zero lower uniform density, i.e.

$$\lim_{n\to+\infty}\min_{t\geq 0}\frac{1}{n}|\mathcal{LM}(X)\cap\{t+1,\ldots,t+n\}|=0.$$

Equivalently, the distance between 2 consecutive elements in $L\mathcal{M}(X)$ is unbounded.

• Prouhet-Thue-Morse subshift is LS τ : 1 \mapsto 10, 0 \mapsto 01 $\mathcal{L}(X) = \{$ subword of $\tau^{n}(0), n \geq 0 \}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

A subshift X is language stable (LS) if the set

 $L\mathcal{M}(X) = \{n \in \mathbb{N}; \mathcal{M}(X) \cap A^n \neq \emptyset\}$

has a zero lower uniform density, i.e.

$$\lim_{n\to+\infty}\min_{t\geq 0}\frac{1}{n}|L\mathcal{M}(X)\cap\{t+1,\ldots,t+n\}|=0.$$

Equivalently, the distance between 2 consecutive elements in $L\mathcal{M}(X)$ is unbounded.

• Prouhet-Thue-Morse subshift is LS $\tau: 1 \mapsto 10, 0 \mapsto 01$ $\mathcal{L}(X) = \{\text{subword of } \tau^n(0), n \ge 0\}.$ Bispecial word are $\epsilon, 1, 0, \tau^n(10), \tau^n(01), \tau^n(101), \tau^n(010)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

A subshift X is language stable (LS) if the set

$$L\mathcal{M}(X) = \{n \in \mathbb{N}; \mathcal{M}(X) \cap A^n \neq \emptyset\}$$

has a zero lower uniform density, i.e.

$$\lim_{n\to+\infty}\min_{t\geq 0}\frac{1}{n}|L\mathcal{M}(X)\cap\{t+1,\ldots,t+n\}|=0.$$

Equivalently, the distance between 2 consecutive elements in $L\mathcal{M}(X)$ is unbounded.

• Prouhet-Thue-Morse subshift is LS $\tau: 1 \mapsto 10, 0 \mapsto 01$ $\mathcal{L}(X) = \{\text{subword of } \tau^n(0), n \ge 0\}.$ Bispecial word are $\epsilon, 1, 0, \tau^n(10), \tau^n(01), \tau^n(101), \tau^n(010)$

$$L\mathcal{M}(X) \subset \{0, 1, 2^n, 2^n3 \quad n \in \mathbb{N}\} + 2.$$

Idea under the definition

For any
$$n \in \mathbb{N}$$
, $X_n := X_{\cup_{\ell=1}^n \mathcal{M}(X) \cap \mathcal{A}^\ell}$ is an SFT, $X = \bigcap_{n \ge 0} X_n.$

For any
$$n \in \mathbb{N}$$
, $X_n := X_{\cup_{\ell=1}^n \mathcal{M}(X) \cap \mathcal{A}^\ell}$ is an SFT, $X = igcap_{n \geq 0} X_n.$

•
$$\mathcal{L}(X_{n+1}) \subset \mathcal{L}(X_n).$$

For any
$$n \in \mathbb{N},$$
 $X_n := X_{\cup_{\ell=1}^n \mathcal{M}(X) \cap \mathcal{A}^\ell}$ is an SFT, $X = igcap_{n \geq 0} X_n.$

•
$$\mathcal{L}(X_{n+1}) \subset \mathcal{L}(X_n)$$
.
• $\mathcal{L}(X_{n+1}) = \mathcal{L}(X_n)$ when $n+1 \notin \mathcal{LM}(X)$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

For any
$$n \in \mathbb{N}$$
, $X_n := X_{\cup_{\ell=1}^n \mathcal{M}(X) \cap A^\ell}$ is an SFT,

$$X=\bigcap_{n\geq 0}X_n.$$

•
$$\mathcal{L}(X_{n+1}) \subset \mathcal{L}(X_n)$$
.

•
$$\mathcal{L}(X_{n+1}) = \mathcal{L}(X_n)$$
 when $n+1 \notin \mathcal{LM}(X)$.

X is well approximated by SFT when X is language stable.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

Theorem

The family of language stable subshifts is

• invariant under conjugacies

Béal-Mignosi-Restivo-Sciortino (00)

• generic

Cyr-Kra (21)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Complexity $p_X(n) = |\mathcal{L}(X) \cap A^n|$, entropy $h = \lim_n \frac{\log(p_X(n))}{n}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Complexity
$$p_X(n) = |\mathcal{L}(X) \cap A^n|$$
, entropy $h = \lim_n \frac{\log(p_X(n))}{n}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

Proposition (CKP)

• Any entropy $h \ge 0$ is realizable by an LS subshift.

Complexity
$$p_X(n) = |\mathcal{L}(X) \cap A^n|$$
, entropy $h = \lim_n \frac{\log(p_X(n))}{n}$.

Proposition (CKP)

- Any entropy $h \ge 0$ is realizable by an LS subshift.
- There exist LS subshifts with arbitrary polynomial complexity.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Complexity
$$p_X(n) = |\mathcal{L}(X) \cap A^n|$$
, entropy $h = \lim_n \frac{\log(p_X(n))}{n}$

Proposition (CKP)

- Any entropy $h \ge 0$ is realizable by an LS subshift.
- There exist LS subshifts with arbitrary polynomial complexity.
- If X is an aperiodic subshift with non-superlinear complexity, i.e.

$$\liminf_{n\to+\infty}\frac{p_X(n)}{n}<+\infty,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

then it is language stable.

Complexity
$$p_X(n) = |\mathcal{L}(X) \cap \mathcal{A}^n|$$
, entropy $h = \lim_n \frac{\log(p_X(n))}{n}$.

Proposition (CKP)

- Any entropy $h \ge 0$ is realizable by an LS subshift.
- There exist LS subshifts with arbitrary polynomial complexity.
- If X is an aperiodic subshift with non-superlinear complexity, i.e.

$$\liminf_{n\to+\infty}\frac{p_X(n)}{n}<+\infty,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

then it is language stable.

● ∃ non LS subshift with arbitrary entropy.

Complexity
$$p_X(n) = |\mathcal{L}(X) \cap A^n|$$
, entropy $h = \lim_n \frac{\log(p_X(n))}{n}$

Proposition (CKP)

- Any entropy $h \ge 0$ is realizable by an LS subshift.
- There exist LS subshifts with arbitrary polynomial complexity.
- If X is an aperiodic subshift with non-superlinear complexity, i.e.

$$\liminf_{n\to+\infty}\frac{p_X(n)}{n}<+\infty,$$

then it is language stable.

- ∃ non LS subshift with arbitrary entropy.
- \exists non LS subshift with $n \log \log n$ complexity

$$\limsup_{n\to+\infty}\frac{p_X(n)}{n\log\log n}<+\infty.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Proposition (CKP)

If X is a subshift with non-superlinear complexity, i.e.

$$\liminf_{n\to+\infty}\frac{p_X(n)}{n}<+\infty,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

then it is language stable.

The proof based on :

Proposition (CKP)

If X is a subshift with non-superlinear complexity, i.e.

$$\liminf_{n\to+\infty}\frac{p_X(n)}{n}<+\infty,$$

then it is language stable.

The proof based on :

- uniform bound on number of special words of a given length
- Fine and Wilf theorem (if X is aperiodic)

This provides the lengths of bispecial words form a zero density set.

Complexity $p_X(n) = |\mathcal{L}(X) \cap A^n|$, entropy $h = \lim_n \frac{\log(p_X(n))}{n}$.

Proposition (CKP)

- Any entropy $h \ge 0$ is realizable by an LS subshift.
- There exist LS subshifts with arbitrary polynomial complexity.
- If X is an aperiodic subshift with non-superlinear complexity, i.e.

$$\liminf_{n\to+\infty}\frac{p_X(n)}{n}<+\infty,$$

then it is language stable.

The set

 $\{\beta > 1; \text{ the } \beta - \text{shift is LS} \}$ has full Lebesgue measure.

うつん 川 ・ ・ エッ・ ・ ・ ・ ・ しゃ

A subshift X is minimal if it contains no proper subshift.

A subshift X is minimal if it contains no proper subshift. Any sequence $x \in X$ is uniformly recurrent:

 $\forall n \in \mathbb{N}, \exists M_X(n) \in \mathbb{N} \text{ s.t.}$ $\forall v \in \mathcal{L}(X) \cap A^n \text{ occurs in any } u \in \mathcal{L}(X) \cap A^{M_X(n)}.$

うつん 川 ・ ・ エッ・ ・ ・ ・ ・ しゃ

A subshift X is minimal if it contains no proper subshift. Any sequence $x \in X$ is uniformly recurrent:

 $\forall n \in \mathbb{N}, \exists M_X(n) \in \mathbb{N} \text{ s.t.}$ $\forall v \in \mathcal{L}(X) \cap A^n \text{ occurs in any } u \in \mathcal{L}(X) \cap A^{M_X(n)}.$

Proposition (CKP)

A minimal subshift X s.t.

$$M_X(n) = O(n^{lpha})$$
 for some $lpha < rac{1+\sqrt{3}}{2} = 1.36$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

is LS.

Proposition (CKP)

 \exists LS subshift *X*, where *X* is minimal and with arbitrary dimension group $C(X, \mathbb{Z})/\langle f - f \circ \sigma \rangle$. In particular,

• the set of σ -invariant probability measure

$$\{\mu; \mu(\sigma^{-1}\cdot) = \mu(\cdot)\},\$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

• the values $\mu(C)$ of clopens C,

can be chosen arbitrary.

Proposition (CKP)

 \exists LS subshift *X*, where *X* is minimal and with arbitrary dimension group $C(X, \mathbb{Z})/\langle f - f \circ \sigma \rangle$. In particular,

• the set of σ -invariant probability measure

$$\{\mu; \mu(\sigma^{-1}\cdot) = \mu(\cdot)\},\$$

うつん 川 ・ ・ エッ・ ・ ・ ・ しゃ

• the values $\mu(C)$ of clopens C,

can be chosen arbitrary.

Proof is obtained thanks a (technical) condition on S-adic morphisms

- circular and biprefix
- growth condition on length of image of letters

Proposition (CKP)

Any speed-up of a minimal LS subshift X, is LS: For any continuous $p: X \to \mathbb{N}$, the system $(X, \sigma^{p(\cdot)}(\cdot))$ is LS.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

e.g.: induced systems of minimal LS are LS.

Proposition (CKP)

Any speed-up of a minimal LS subshift X, is LS: For any continuous $p: X \to \mathbb{N}$, the system $(X, \sigma^{p(\cdot)}(\cdot))$ is LS.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

e.g.: induced systems of minimal LS are LS.

Proposition (CKP)

Any speed-up of a minimal LS subshift X, is LS: For any continuous $p: X \to \mathbb{N}$, the system $(X, \sigma^{p(\cdot)}(\cdot))$ is LS.

e.g.: induced systems of minimal LS are LS.

 \exists minimal subshift that is not LS

Pavlov

うつん 川 ・ ・ エッ・ ・ ・ ・ しゃ

On automorphisms of LS subshifts

$$\operatorname{Aut}(X,\sigma) = \{\phi \colon X \to X; \phi \circ \sigma = \sigma \circ \phi\} \ni \sigma.$$

(ロ)、

On automorphisms of LS subshifts

Aut
$$(X, \sigma) = \{\phi \colon X \to X; \phi \circ \sigma = \sigma \circ \phi\} \ni \sigma.$$

Theorem (Cyr-Kra)

If X is LS, then the $Aut(X, \sigma)$ -action admits an invariant measure:

$$\exists \textit{ measure } \mu; \quad \mu(\phi^{-1}(\cdot)) = \mu(\cdot) \quad \forall \phi \in Aut(X, \sigma).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

On automorphisms of LS subshifts

$$\operatorname{Aut}(X,\sigma) = \{\phi \colon X \to X; \phi \circ \sigma = \sigma \circ \phi\} \ni \sigma.$$

Theorem (Cyr-Kra)

If X is LS, then the $Aut(X, \sigma)$ -action admits an invariant measure:

$$\exists \textit{ measure } \mu; \quad \mu(\phi^{-1}(\cdot)) = \mu(\cdot) \quad \forall \phi \in Aut(X, \sigma)$$

Theorem (Cyr-Kra-P)

Assume that X is LS and the gaps in LM(X) growth fast enough (explicit) Then for any factor Y of X the $Aut(Y, \sigma)$ -action admits an invariant measure:

$$\exists \textit{ measure } \mu; \quad \mu(\phi^{-1}(\cdot)) = \mu(\cdot) \quad \forall \phi \in Aut(Y, \sigma).$$

$$\operatorname{Aut}(X,\sigma) = \{\phi \colon X \to X; \phi \circ \sigma = \sigma \circ \phi\} \ni \sigma.$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

Theorem (Cyr-Kra-P)

If X is irreducible and LS, then $Aut(X, \sigma)$ is a LEF group

Restrictions on LS subshifts

$$\operatorname{Aut}(\boldsymbol{X},\sigma) = \{\phi \colon \boldsymbol{X} \to \boldsymbol{X}; \phi \circ \sigma = \sigma \circ \phi\} \ni \sigma.$$

Theorem (Cyr-Kra-P)

If X is irreducible and LS, then $Aut(X, \sigma)$ is a LEF group

Gordon-Vershik

The group *G* is Locally Embeddable into Finite groups (LEF) if for every finite set $K \subset G$, there exists a finite group *H* and a map $\varphi : G \to H$ such that the following hold:

$${igodot} \ arphi(k_1k_2) = arphi(k_1)arphi(k_2)$$
 for all $k_1,k_2\in K$

2 the restriction of φ to *K* is injective.

LEF	not LEF		
$\mathbb{Z}^{d}, \mathbb{F}_{d}, \mathbb{Q}$	$\langle a,b;ba^nb^{-1}=a^m angle \ n>m\geq 2$		
resid. finite	Thompson group V&T		
	·	э	500

Restrictions on LS subshifts

$$\operatorname{Aut}(X,\sigma) = \{\phi \colon X \to X; \phi \circ \sigma = \sigma \circ \phi\} \ni \sigma.$$

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

Theorem (Cyr-Kra-P)

If X is irreducible and LS, then $Aut(X, \sigma)$ is a LEF group

There exists subshifts where $Aut(X, \sigma)$ is not LEF.