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1 - The Elephant Random Walk (ERW)
Model introduced by physics researchers, Schütz and Trimper (2004), in order to
investigate the long-term memory effects in non-Markovian random walks.

0−1 +1
• • • • • • • • •

▶ q parameter of the first step : X1 =

{
+1 with probability q

−1 with probability 1− q

▶ p parameter of the memory: k uniformly chosen in {1, . . . , n}, and

Xn+1 =

{
Xk with probability p

−Xk with probability 1− p.

The position of the elephant at time n is Sn = Sn−1 +Xn =

n∑
i=1

Xi.
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2 - Asymptotics of the ERW

It is a specific case of step-reinforced RW. The position of the ERW at time n is given by
Sn = Sn−1 +Xn.
Let a = 2p− 1. We note that a > 1

2 ⇔ p > 3
4 .

Using martingale convergence theorems, or a parallel with pòlya-type urns, three regimes
have been observed:

▶ Diffusive regime (a < 1
2 ) [Baur-Bertoin (2016), Coletti et al. (2017)]

Sn

n

a.s.−→ 0 and
(
S⌊nt⌋√

n

)
t⩾0

=⇒ (Wt)t⩾0

▶ Critical regime (a = 1
2 ) [Bercu (2018), Coletti et al. (2017)]

Sn√
n log n

a.s.−→ 0 and

(
S⌊nt⌋√
nt log n

)
t⩾0

=⇒ (Bt)t⩾0
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)
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=⇒ (Wt)t⩾0

▶ Critical regime (a = 1
2 ) [Bercu (2018), Coletti et al. (2017)]

Sn√
n log n

a.s.−→ 0 and

(
S⌊nt⌋√
nt log n

)
t⩾0

=⇒ (Bt)t⩾0

where (Bt)t⩾0 is a standard Brownian motion.
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▶ Superdiffusive regime (a > 1
2 ) [Baur-Bertoin (2016), Bercu (2018), Kubota-Takei (2019)]

Sn

na

a.s.−→ L,

(
S⌊nt⌋

na

)
t⩾0

=⇒ (taL)t⩾0

and
Sn − naL√

n

(d)−→ N
(
0,

1

2a− 1

)
where L is some non-degenerate, non-gaussian, random variable.
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Sn
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a.s.−→ L,

(
S⌊nt⌋

na

)
t⩾0

=⇒ (taL)t⩾0

and
Sn − naL√

n

(d)−→ N
(
0,

1

2a− 1

)
where L is some non-degenerate, non-gaussian, random variable.

Those results have been extended to any dimension d taking a = 2dp−1
2d−1 [Laulin (2019)].
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and
Sn − naL√

n

(d)−→ N
(
0,

1

2a− 1

)
where L is some non-degenerate, non-gaussian, random variable.

We will focus in this talk on the properties of the random variable L.

From Baur and Bertoin (2015) on Random Recursive Trees, we obtain

L = Z1C1 +

∞∑
i=2

(βτi)
aZiCi a.s.,

with Z1 Rademacher r.v. R(q), (Zi)i⩾2 Rademarcher R(1/2) r.v., Ci Mittag-Leffler r.v. with
parameter a, βk denotes a beta random variable with parameters (1, k − 1), and τi − 1 Binomiale
Negative (i− 1, 1− a) r.v.
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▶ Superdiffusive regime (a > 1
2 ) [Baur-Bertoin (2016), Bercu (2018), Kubota-Takei (2019)]

Sn

na

a.s.−→ L,

(
S⌊nt⌋

na

)
t⩾0

=⇒ (taL)t⩾0

and
Sn − naL√

n

(d)−→ N
(
0,

1

2a− 1

)
where L is some non-degenerate, non-gaussian, random variable.

We will focus in this talk on the properties of the random variable L.

We denote by L+ when X1 = +1 and L− when X1 = −1.

The r.v. L is the discrete mixture of L+ and L−.
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3 - Pólya urn representation of the ERW

Let Un = (Rn, Bn) with Rn = # red balls
Bn = # blue balls at time n.

Initial composition of the urn is U1 = (1, 0) with probability q
U1 = (0, 1) with probability 1− q

. At each time n, a

ball is drawn uniformly,

Source: L. Laulin.

Then, an extra ball of the same color is added with probability p, and of the other color
with probability 1− p.
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Let S1 = R1 −B1, and for every n ⩾ 1

Sn = Rn −Bn.

We easily see that (Sn)n⩾1 is an ERW with a memory parameter p and first step
parameter q.

Let us recall that L+ when X1 = +1 and L− when X1 = −1.

Theorem (Janson (2004))

When a > 1/2,
U1 = (1, 0), lim

n→∞

Rn −Bn

na
= L+ a.s.

U1 = (0, 1), lim
n→∞

Rn −Bn

na
= L− a.s.

By symmetry, L− = −L+.
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4 - Asymptotic distribution in the superdiffusive regime

We prove that L+ satisfies a fixed-point equation, which will be the key to studying its
distribution.

To this aim, we associate a tree structure to the urn process: the tree grows at each
drawing from the urn.
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At time 1, the tree is one red node with proba q or one blue node with proba 1− q.
with probability q with probability 1− q

At time n, each leaf in the tree represents a ball in the urn.
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For n ⩾ 2, D1(n) be the number of leaves at time n of the first subtree
D2(n) be the number of leaves at time n of the second subtree.

We have D1(n) +D2(n) = n, and

U(1,0)(n)
L
= U

(1)
(1,0)(D1(n)− 1) + ξpU

(2)
(1,0)(D2(n)− 1) + (1− ξp)U

(2)
(0,1)(D2(n)− 1).

We recall that, when
U1 = (1, 0), lim

n→∞

Rn −Bn

na
= L+ a.s.

U1 = (0, 1), lim
n→∞

Rn −Bn

na
= L− a.s.

and
lim

n→+∞

D1(n)

n
= V lim

n→+∞

D2(n)

n
= 1− V with V ∼ Unif [0, 1].

Let n1 = D1(n)− 1 and n2 = D2(n)− 1, then

U(1,0)(n)

na

L
=
(n1

n

)aU (1)
(1,0)(n1)

na
1

+ ξp

(n2

n

)aU (2)
(1,0)(n2)

na
2

+ (1− ξp)
(n2

n

)aU (2)
(0,1)(n2)

na
2

.
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For n ⩾ 1, D1(n) be the number of leaves at time n of the first subtree
D2(n) be the number of leaves at time n of the second subtree.

U(1,0)(n)

na

L
=
(n1

n

)aU (1)
(1,0)(n1)

na
1

+ ξp

(n2

n

)aU (2)
(1,0)(n2)

na
2

+ (1− ξp)
(n2

n

)aU (2)
(0,1)(n2)

na
2

.

Taking the limit,

Theorem (G., Laulin, Raschel, 2023)
L+ satisfies the fixed-point equation

L+
L
= V aL

(1)
+ + ξp(1− V )aL

(2)
+ + (1− ξp)(1− V )aL

(2)
−

=⇒ L+
L
= V aL

(1)
+ + (2ξp − 1)(1− V )aL

(2)
+ (because L− = −L+)

where all the r.v. are independent and
▶ V uniform random variable on [0, 1],
▶ ξp Bernoulli random variable with parameter p,

▶ L
(1)
+ and L

(2)
+ are copies of L+.
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Main results

L+
L
= V aL

(1)
+ + (2ξp − 1)(1− V )aL

(2)
+ .

We deduce from this fixed-point equation that

Theorem (G., Laulin, Raschel, 2023)

▶ Supp(L+) = R.
▶ L+ has a bounded smooth density on R (based on the study of the characteristic function).
▶ The moments of L+ characterize the distribution.
▶ E

[
exp(L2

+)
]
< +∞.
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Because L is a discrete mixture of L+ and L−, and L− = −L+.
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Main results

L+
L
= V aL

(1)
+ + (2ξp − 1)(1− V )aL

(2)
+ .

We deduce from this fixed-point equation that

Theorem (G., Laulin, Raschel, 2023)

▶ Supp(L) = R.
▶ L has a bounded smooth density on R.
▶ The moments of L characterize the distribution.
▶ E

[
exp(L2)

]
< +∞.

These results are still true in higher dimension.
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Focus on the density function

From the fixed-point equation, we deduce a nice recursive way to compute de successive
moments of L+.

Theorem (G., Laulin, Raschel, 2023)
The moments of L+ are given by the following recursive equation. Let (mk)k⩾1 with
m1 = 1, and for k ⩾ 2,

mk =
1

ka− ck

k−1∑
j=1

cjmjmk−j ,

where ck = 1 for even k and ck = a for odd k. Let C be a Mittag-Leffler r.v. with
parameter a.
Then for any k ⩾ 1,

E[Lk
+] = E[Ck]mk with E[Ck] =

k!

Γ(ka+ 1)
.
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Warning! We have for any k ⩾ 1, E[Lk
+] = E[Ck]mk with C a Mittag-Leffler variable, but

we cannot write

L+ = C.Y with Y independent of C and E[Y k] = mk.

L+ = C.Y with Y an independent variable of C and E[Y k] = mk.

However, we can study the sequence (mk)k⩾1 to obtain information on the density of L+.

Theorem (G., Laulin, Raschel, Simon, 2024)
We have

mk ∼
k→+∞

2a

a+ 1
ρ(a)k,

where ρ(a) > 1 is an explicit constant.
From the properties of the Mittag-Leffer distribution, we deduce

E[Lk
+]

ρ(a)kk!
∼

k→+∞

2a

(a+ 1)Γ(1 + ak)
.
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By Kasahara’s Tauberien theorem, we deduce

Theorem (G., Laulin, Raschel, Simon, 2024)
Let f be the density function of L+. We have

ln f(x) ∼
|x|→∞

−(1− a)

(
aa

ρ(a)
x

) 1
1−a

.

A more precise result: there are explicit positive constants c+(a), c−(a) such that

f(x) ∼
x→+∞

c+(a)x
2a−1

2(1−a) e−(1−a)( aa

ρ(a)
x)

1
1−a

f(x) ∼
x→−∞

c−(a)x
2a2−3a−1

2(1−a2) e−(1−a)( aa

ρ(a)
x)

1
1−a

.

Note that for a ∈ (0, 1), 2a−1
2(1−a)

> 2a2−3a−1
2(1−a2)

.
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Other properties

Using the following recursive expression of the distribution of Sn

Q(n+ 1, k) = (np− ak)Q(n, k) + ((1− p)n+ a(k − 1))Q(n, k − 1), Q(1, 1) = 1,

with Q(n, k) = (n− 1)!P(Sn = 2k − n), we also proved

▶ the distribution of L+ is unimodal;

▶ the density est log-concave for a ∈ (1/2, a0) for an explicit a0 < 1.
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Summary and some open questions

Summary:
▶ It was known that the normalized ERW converges to a subgaussian nondegenerate

random variable L when a = 2p− 1 > 1
2 (p > 3

4 ).

▶ Nothing was known about the asymptotic distribution, except that it has no atoms.

▶ Using a tree decomposition of the Pólya urn representation of ERW, we have been
able to prove that L+ satisfies a fixed-point equation in distribution.

▶ From this fixed-point equation, we deduced that L+ has a smooth bounded positive
density on R, the distribution is characterized by its moments.

▶ From the recursive equation on the moments, we obtained the tails of the distribution.

▶ Is the density log-concave for a ∈ (1/2, 1)?

▶ The ERW is a specific step-reinforced random walk. Would it be possible to extend
some of these results to this more general class of non-makovian random walks?
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A trajectory of Sn, with q = 1 and p = 0.92. Histogram and moments approximation of the density of L+.
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Thank you!

q = 0.5 q = 0.7 q = 0.9
Histogram and moments approximation of the density of Lq .

First (resp. second, third) line: p = 0.77 (resp. p = 0.87, p = 0.92).
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