Forêts massiques : distribution exacte et limite locale sur le graphe complet MAD days 2025, LMRS, Rouen

20 juin 2025, 14h45 (heure de Paris)

Matteo D'Achille

basé sur

• D'A, Nathanaël Enriquez (Orsay & ENS), Paul Melotti (Orsay) 2403.11740

• D'A, Wioletta Ruszel (Utrecht)

WIP

λ massive spanning forest: definition

A simple graph G (no self-loops), the set of its spanning forests with k components $\overline{\mathcal{F}_k(G)}$, $k \ge 1$ ($\mathcal{F}_1(G)$: spanning trees of G).

Def. (λ **SF**(G)). For $f \in \mathcal{F}_k(G)$, let:

- C(f): set of connected components (trees);
- For a tree t, let $|t| = \#\{\text{vertices in } t\}$.

Then for $\lambda > 0$ define

$$\mathbf{P}\left(\lambda \mathbf{SF}(G) = f\right) \propto \lambda^{|C(f)|} \prod_{t \in C(f)} |t| \; .$$

Motivations and related works

Massive (off-critical) version of UST(G).

$$\lambda \mathbf{SF}(G) \xrightarrow[\lambda \downarrow 0]{(\mathrm{d})} \mathbf{UST}(G)$$

- Grimmett 1980: cardinality of h-th progeny of a given vertex in $\mathbf{UST}(\mathbf{K}_n)$
- Nachmias–Peres 22: put Grimmett into a local limit results + extension to UST(G_n), {G_n}_{n≥1} a seq. of simple, connected regular graphs with diverging degree.

Some confusion around Kirchhoff's thm(s).

Kirchhoff's matrix-forest theorem Biggs 93, Kenyon 11

For $\Delta_G = D_G - A_G$ the graph laplacian, define the **characteristic** polynomial of G:

$$P_G(\lambda) \stackrel{\mathsf{def}}{=} \det(\Delta_G + \lambda I_n)$$

Kirchhoff's matrix-forest theorem: $P_G(\lambda)$ is the **OGF** of $\{\mathcal{F}_k^{\bullet}(G)\}_{k\geq 1}$ $P_G(\lambda) = \sum_{k\geq 1} |\mathcal{F}_k^{\bullet}(G)| \lambda^k$,

 $\mathcal{F}_k^{\bullet}(G):\mathbf{rooted}$ spanning forests with k trees.

$\lambda \mathbf{SF}(G)$ is determinantal

Burton-Pemantle 93 for **UST**(G). Let n = |V(G)|.

 $R_{\lambda} = (\Delta_G + \lambda I_n)^{-1}$ Green function

 $K_{\lambda}(e,f) = R_{\lambda}(e_{-},f_{-}) + R_{\lambda}(e_{+},f_{+}) - R_{\lambda}(e_{-},f_{+}) - R_{\lambda}(e_{+},f_{-}) \text{ transfer current matrix (given an orientation)}$

Proposition (D'A-Enriquez-Melotti 24) Let $e_1, \ldots, e_k, e_{k+1}, \ldots, e_p$ be p distinct edges of G. Then $\mathbf{P}(e_1, \ldots, e_k \in \lambda \mathbf{SF}(G), e_{k+1}, \ldots, e_p \notin \lambda \mathbf{SF}(G)) = \det M$ where $M_{i,j} = \begin{cases} K_{\lambda}(e_i, e_j) & \text{if } i \leq k \\ \delta_{i,j} - K_{\lambda}(e_i, e_j) & \text{if } k < i \leq p. \end{cases}$

$\lambda \mathbf{SF}(G)$ is determinantal

Proof. Start with "all out" (k = 0):

$$\mathbf{P}(e_1,\ldots,e_p\notin\lambda\mathbf{SF}(G))=\frac{P_{G\setminus\{e_1,\ldots,e_p\}}(\lambda)}{P_G(\lambda)}=\frac{\det\left(\Delta_{G\setminus\{e_1,\ldots,e_p\}}+\lambda I_n\right)}{\det\left(\Delta_G+\lambda I_n\right)}$$

Observe that

$$\Delta_{G \setminus \{e_1, \dots, e_p\}} = \Delta_G - BB^T$$

for an easy matrix B. Use now

$$\det\left(I_{n}-R_{\lambda}BB^{T}\right)=\det\left(I_{p}-B^{T}R_{\lambda}B\right)^{*}$$

 $B^T R_{\lambda} B = K_{\lambda}$. The case $k \ge 1$ by inclusion-exclusion.

*Sylvester's determinant theorem for rectangular matrices Local limit of $\lambda SF(\mathbb{K}_n)$

Transfer current matrix for \mathbf{K}_n (D'A-Enriquez-Melotti 24)

From now on: $G = \mathbf{K}_n$, where \mathbf{K}_n is the **complete graph** on n vertices.

 $\Delta_{\mathbf{K}_n}$ is 2-valued, so R_λ is. Compute these two values and plug in: $\forall e, f \in E(\mathbf{K}_n)$,

$$K_{\lambda}(e,f) = \frac{1}{(n+\lambda)} \left(\mathbf{1}_{e_{-}=f_{-}} + \mathbf{1}_{e_{+}=f_{+}} - \mathbf{1}_{e_{-}=f_{+}} - \mathbf{1}_{e_{+}=f_{-}} \right) \;.$$

<u>Remark</u>: e, f have to be incident: +1 if they start or end at the same vertex, -1 if they "chase" each other, otherwise 0!

The key lemma

 t_{lab} : tree w. vertices **labeled** by distinct integers in $\{1, \ldots, n\}$. Let $k = |t_{\text{lab}}|$.

Lemma [Inclusion proba] (D'A-Enriquez-Melotti 24) $\mathbf{P} (t_{\text{lab}} \subset \lambda \mathbf{SF}(\mathbf{K}_n)) = \frac{k}{(n+\lambda)^{k-1}} .$

Proof.

$$M_{\lambda} = \frac{1}{n+\lambda} \mathcal{A} \mathcal{A}^T ,$$

 \mathcal{A} : $(k-1) \times k$ edge-vertex incidence matrix. By **Cauchy–Binet**:

$$\det M_{\lambda} = \frac{1}{(n+\lambda)^{k-1}} \sum_{j=1}^{k} \left(\det \mathcal{A}_{j}\right)^{2}$$

Local limit of $\lambda \mathbf{SF}(\mathbf{K}_n)$

Main theorem

- Let o be a fixed vertex of K_n (viewpoint). Let:
- $T_{n,\lambda}$ labeled tree of \mathbf{o} in $\lambda \mathbf{SF}(\mathbf{K}_n)$;
- Shape $(T_{n,\lambda}, \mathbf{o})$: non-planar unlab. tree obt. from $T_{n,\lambda}$, rooted at \mathbf{o} ;
- Local convergence: endow locally finite (but possibly $\infty)$ rooted trees with the topology inherited from the product topology

$3 \lambda SF(K_n)$

Local limit of $\lambda \mathbf{SF}(\mathbf{K}_n)$

Main theorem

8/14

Local limit of $\lambda \mathbf{SF}(\mathbf{K}_n)$

Remarks:

- $T_0 = BGWP(1)$ condit. to survival (Grimmett, generalized by Nachmias–Peres);
- \mathcal{T}_{α} is **unimodular** (Benjamini 13);
- # of trees in $\lambda SF(K_n)$ concentrates around $\frac{\lambda+1}{\lambda+n}n$ (Castell-Avena-Gaudilliere-Melot);

Similar Exact distribution of Shape $(T_{n,\lambda}, \mathbf{o})$ at for any n and λ !

Exact distribution of $\mathsf{Shape}(T_{n,\lambda}, \mathbf{o})$ Sketch of proof

Key lemma \Rightarrow Proba that the (labeled) connected component of $\lambda SF(\mathbf{K}_n)$ containing $\mathbf{o} = \mathbf{a}$ given (labeled) tree is of binomial type!

$$\mathbf{P}\left(\mathrm{Shape}(T_{n,\lambda},\mathbf{o})_{\leq h} = t\right) = \frac{1}{|\mathsf{Aut}(t)|} \frac{(n-1)!}{(n-|t|)!} \frac{1}{(n+\lambda)^{|t|}} \left(n|t_h| + \lambda|t|\right) \left(1 - \frac{|t_{\leq h}|}{n+\lambda}\right)^{n-|t|-1}$$

- t: a rooted, unlabeled tree and integer $h \ge 0$,
- t_h vertices of t at distance exactly h from the root;
- t_{≤h}: tree given by the intersection of t with the closed ball of radius h centered at the root;
- $t_{\leq h}$: tree given by the intersection of t with the closed ball of radius h-1 centered at the root;
- Aut(t) graph automorphisms of t preserving its root.

The phase transition for $\lambda = \lambda_n$ follows.

Identification of the limit

(Featuring a simple lemma on subcritical BGWP)

Lemma (D'A-Enriquez-Melotti 24)

 $\beta < 1$, $h \ge 0$, t: an unlabeled rooted tree of height $\le h$.

$$\mathbf{P}\left(\mathsf{BGWP}(\beta)_{\leq h} = t\right) = \frac{1}{|\mathsf{Aut}(t)|}\beta^{|t|-1}e^{-\beta|t_{\leq h}|}$$

Proof. LHS and RHS satisfy the same recurrence with same initial condition.

Spinal decomposition and use the Lemma with $\beta = \frac{1}{1+\alpha}$.

Three perspectives on \mathbb{Z}_d

For $n_1 \ldots, n_d$ positive integers, $G_{n_1, n_2, \ldots, n_d}$: Cartesian product of $d \ge 1$ path graphs on $n_1 \ldots, n_d$ vertices.

• $\lambda SF(G_{n_1,n_2})$ and colored partitions of n_2 avoiding the pattern $1^1 1^2$ (with Melotti)

Solution Local limit of
$$\lambda \mathbf{SF}(G_{n_1,n_2,\dots,n_d})$$
 (with Ruszel)

• Exit probabilities and mSLE in the scaling limit

λSF and fGFF

For $\mathsf{UST}(\mathbb{Z}_d)$:

Local observables (degree field, ...) ↔ Expect. values of gradients of Grassmannian variables wrt fermionic discrete GFF (Chiarini–Cipriani–Rapoport–Ruszel 23)

This works also for $\lambda \mathbf{SF}(\mathbb{Z}_d)!$

