
On the average complexity of the word problem
in subgroups of integral invertible matrices

Frédérique Bassino
LIPN, Université Sorbonne Paris Nord

MAD Days, June 18-20 2025, Rouen

Joint works with Cyril Nicaud (LIGM, Université Gustave Eiffel) &
Pascal Weil (CNRS, LIPN & Université Sorbonne Paris Nord)

– The Word Problem –

▶ The word problem is the problem of deciding whether two given
expressions are equivalent with respect to a set of rewriting
identities (e.g, a set of relators).

▶ This problem is mainly studied in (semi)group theory.

The Word Problem in groups (Dehn 1911)

Let Σ be a finite subset of a group G, is it decidable whether a finite
word w on Σ̃ = Σ ∪ Σ−1 evaluates to 1 in G?

▶ This problem is not decidable in general even for finitely
presented groups (Novikov 1955, Boone 1959).

▶ It is decidable for automatic groups inluding finite, free,
hyperbolic or braid groups (Epstein et al. 1992); 1-relator groups
(Magnus, Karass and Solitar 1966)...

– The Word Problem –

▶ The word problem is the problem of deciding whether two given
expressions are equivalent with respect to a set of rewriting
identities (e.g, a set of relators).

▶ This problem is mainly studied in (semi)group theory.

The Word Problem in groups (Dehn 1911)

Let Σ be a finite subset of a group G, is it decidable whether a finite
word w on Σ̃ = Σ ∪ Σ−1 evaluates to 1 in G?

▶ This problem is not decidable in general even for finitely
presented groups (Novikov 1955, Boone 1959).

▶ It is decidable for automatic groups inluding finite, free,
hyperbolic or braid groups (Epstein et al. 1992); 1-relator groups
(Magnus, Karass and Solitar 1966)...

– The Word Problem –

▶ The word problem is the problem of deciding whether two given
expressions are equivalent with respect to a set of rewriting
identities (e.g, a set of relators).

▶ This problem is mainly studied in (semi)group theory.

The Word Problem in groups (Dehn 1911)

Let Σ be a finite subset of a group G, is it decidable whether a finite
word w on Σ̃ = Σ ∪ Σ−1 evaluates to 1 in G?

▶ This problem is not decidable in general even for finitely
presented groups (Novikov 1955, Boone 1959).

▶ It is decidable for automatic groups inluding finite, free,
hyperbolic or braid groups (Epstein et al. 1992); 1-relator groups
(Magnus, Karass and Solitar 1966)...

– The Word Problem –

▶ The word problem is the problem of deciding whether two given
expressions are equivalent with respect to a set of rewriting
identities (e.g, a set of relators).

▶ This problem is mainly studied in (semi)group theory.

The Word Problem in groups (Dehn 1911)

Let Σ be a finite subset of a group G, is it decidable whether a finite
word w on Σ̃ = Σ ∪ Σ−1 evaluates to 1 in G?

▶ This problem is not decidable in general even for finitely
presented groups (Novikov 1955, Boone 1959).

▶ It is decidable for automatic groups inluding finite, free,
hyperbolic or braid groups (Epstein et al. 1992); 1-relator groups
(Magnus, Karass and Solitar 1966)...

– The Word Problem in GLd(Z) –

▶ Let GLd(Z) be the set of d × d invertible matrices with
coefficients in Z. The integer d is fixed.

▶ Let Σ be a nonempty finite subset of GLd(Z).

The Word Problem in the subgroup generated by Σ

Given a finite word w on Σ̃ = Σ ∪ Σ−1, is the (matrix) evaluation
M(w) of w in GLd(Z) equal Id ?

▶ This problem is of course decidable in GLd(Z).
▶ But what is its complexity?

– The Word Problem in GLd(Z) –

▶ Let GLd(Z) be the set of d × d invertible matrices with
coefficients in Z. The integer d is fixed.

▶ Let Σ be a nonempty finite subset of GLd(Z).

The Word Problem in the subgroup generated by Σ

Given a finite word w on Σ̃ = Σ ∪ Σ−1, is the (matrix) evaluation
M(w) of w in GLd(Z) equal Id ?

▶ This problem is of course decidable in GLd(Z).
▶ But what is its complexity?

– The Word Problem in GLd(Z) –

▶ Let GLd(Z) be the set of d × d invertible matrices with
coefficients in Z. The integer d is fixed.

▶ Let Σ be a nonempty finite subset of GLd(Z).

The Word Problem in the subgroup generated by Σ

Given a finite word w on Σ̃ = Σ ∪ Σ−1, is the (matrix) evaluation
M(w) of w in GLd(Z) equal Id ?

▶ This problem is of course decidable in GLd(Z).
▶ But what is its complexity?

– The Word Problem in GLd(Z) –

▶ Let GLd(Z) be the set of d × d invertible matrices with
coefficients in Z. The integer d is fixed.

▶ Let Σ be a nonempty finite subset of GLd(Z).

The Word Problem in the subgroup generated by Σ

Given a finite word w on Σ̃ = Σ ∪ Σ−1, is the (matrix) evaluation
M(w) of w in GLd(Z) equal Id ?

▶ This problem is of course decidable in GLd(Z).

▶ But what is its complexity?

– The Word Problem in GLd(Z) –

▶ Let GLd(Z) be the set of d × d invertible matrices with
coefficients in Z. The integer d is fixed.

▶ Let Σ be a nonempty finite subset of GLd(Z).

The Word Problem in the subgroup generated by Σ

Given a finite word w on Σ̃ = Σ ∪ Σ−1, is the (matrix) evaluation
M(w) of w in GLd(Z) equal Id ?

▶ This problem is of course decidable in GLd(Z).
▶ But what is its complexity?

– Bit complexity –

Bit complexity

The bit complexity is the number of operations on bits that are needed
for running an algorithm.

▶ Integers are identified with their binary expansion.
▶ The bit size ℓ(m) of m is ⌈log(|m|+ 1)⌉+ 1 (with the sign).
▶ Coefficients of M(w) grow at most exponentially in |w| −→ their

bit sizes grow at most linearly in |w|.

Theorem (Harvey and van der Hoeven 2021)

If ℓ(p), ℓ(q) ≤ L, then pq is computed in O(L log L).

– Bit complexity –

Bit complexity

The bit complexity is the number of operations on bits that are needed
for running an algorithm.

▶ Integers are identified with their binary expansion.

▶ The bit size ℓ(m) of m is ⌈log(|m|+ 1)⌉+ 1 (with the sign).
▶ Coefficients of M(w) grow at most exponentially in |w| −→ their

bit sizes grow at most linearly in |w|.

Theorem (Harvey and van der Hoeven 2021)

If ℓ(p), ℓ(q) ≤ L, then pq is computed in O(L log L).

– Bit complexity –

Bit complexity

The bit complexity is the number of operations on bits that are needed
for running an algorithm.

▶ Integers are identified with their binary expansion.
▶ The bit size ℓ(m) of m is ⌈log(|m|+ 1)⌉+ 1 (with the sign).

▶ Coefficients of M(w) grow at most exponentially in |w| −→ their
bit sizes grow at most linearly in |w|.

Theorem (Harvey and van der Hoeven 2021)

If ℓ(p), ℓ(q) ≤ L, then pq is computed in O(L log L).

– Bit complexity –

Bit complexity

The bit complexity is the number of operations on bits that are needed
for running an algorithm.

▶ Integers are identified with their binary expansion.
▶ The bit size ℓ(m) of m is ⌈log(|m|+ 1)⌉+ 1 (with the sign).
▶ Coefficients of M(w) grow at most exponentially in |w| −→ their

bit sizes grow at most linearly in |w|.

Theorem (Harvey and van der Hoeven 2021)

If ℓ(p), ℓ(q) ≤ L, then pq is computed in O(L log L).

– Bit complexity –

Bit complexity

The bit complexity is the number of operations on bits that are needed
for running an algorithm.

▶ Integers are identified with their binary expansion.
▶ The bit size ℓ(m) of m is ⌈log(|m|+ 1)⌉+ 1 (with the sign).
▶ Coefficients of M(w) grow at most exponentially in |w| −→ their

bit sizes grow at most linearly in |w|.

Theorem (Harvey and van der Hoeven 2021)

If ℓ(p), ℓ(q) ≤ L, then pq is computed in O(L log L).

– Naive algorithm –

Naive algorithm

If w = a1 . . . an (each ai ∈ Σ̃)
▶ Compute the n− 1 products w0 = Id, wi+1 = wi ai+1, . . .,

wn = M(w),
▶ Check whether M(w) is Id.

▶ In the worst case:
▶ The length of the coefficients in M(w) grows linearly in n = |w|.

▶ The cost of each multiplication is O(n log n).
▶ This algorithm computes M(w) in O(n2 log n).
▶ Checking whether M(w) is Id is done in constant time.
▶ The complexity of this naive algorithm is in O(n2 log n).

– Naive algorithm –

Naive algorithm

If w = a1 . . . an (each ai ∈ Σ̃)
▶ Compute the n− 1 products w0 = Id, wi+1 = wi ai+1, . . .,

wn = M(w),
▶ Check whether M(w) is Id.

▶ In the worst case:
▶ The length of the coefficients in M(w) grows linearly in n = |w|.
▶ The cost of each multiplication is O(n log n).

▶ This algorithm computes M(w) in O(n2 log n).
▶ Checking whether M(w) is Id is done in constant time.
▶ The complexity of this naive algorithm is in O(n2 log n).

– Naive algorithm –

Naive algorithm

If w = a1 . . . an (each ai ∈ Σ̃)
▶ Compute the n− 1 products w0 = Id, wi+1 = wi ai+1, . . .,

wn = M(w),
▶ Check whether M(w) is Id.

▶ In the worst case:
▶ The length of the coefficients in M(w) grows linearly in n = |w|.
▶ The cost of each multiplication is O(n log n).
▶ This algorithm computes M(w) in O(n2 log n).

▶ Checking whether M(w) is Id is done in constant time.
▶ The complexity of this naive algorithm is in O(n2 log n).

– Naive algorithm –

Naive algorithm

If w = a1 . . . an (each ai ∈ Σ̃)
▶ Compute the n− 1 products w0 = Id, wi+1 = wi ai+1, . . .,

wn = M(w),
▶ Check whether M(w) is Id.

▶ In the worst case:
▶ The length of the coefficients in M(w) grows linearly in n = |w|.
▶ The cost of each multiplication is O(n log n).
▶ This algorithm computes M(w) in O(n2 log n).
▶ Checking whether M(w) is Id is done in constant time.

▶ The complexity of this naive algorithm is in O(n2 log n).

– Naive algorithm –

Naive algorithm

If w = a1 . . . an (each ai ∈ Σ̃)
▶ Compute the n− 1 products w0 = Id, wi+1 = wi ai+1, . . .,

wn = M(w),
▶ Check whether M(w) is Id.

▶ In the worst case:
▶ The length of the coefficients in M(w) grows linearly in n = |w|.
▶ The cost of each multiplication is O(n log n).
▶ This algorithm computes M(w) in O(n2 log n).
▶ Checking whether M(w) is Id is done in constant time.
▶ The complexity of this naive algorithm is in O(n2 log n).

– A divide-and-conquer algorithm –

Algorithm 1: Algorithm DCΣ

Input : a sequence w of n elements of Σ̃
Output: M(w)

1 if n = 0 (resp. n = 1) then
2 return Id (resp. M(w))

3 w1 ← prefix of w of length ⌊n/2⌋
4 w2 ← suffix of w of length ⌈n/2⌉
5 return DCΣ(w1)× DCΣ(w2)

The worst-case complexity C(n) satisfies the functional equation:
C(n) = C(⌊ n

2⌋) + C(⌈ n
2⌉) + cost-of-multiplying(M(w1)M(w2)).

– A divide-and-conquer algorithm –

Algorithm 2: Algorithm DCΣ

Input : a sequence w of n elements of Σ̃
Output: M(w)

1 if n = 0 (resp. n = 1) then
2 return Id (resp. M(w))

3 w1 ← prefix of w of length ⌊n/2⌋
4 w2 ← suffix of w of length ⌈n/2⌉
5 return DCΣ(w1)× DCΣ(w2)

The worst-case complexity C(n) satisfies the functional equation:
C(n) = C(⌊ n

2⌋) + C(⌈ n
2⌉) + cost-of-multiplying(M(w1)M(w2)).

– The Master Theorem –

The Master Theorem
Suppose C(n) satisfies C(n) = C(⌊ n

2⌋) + C(⌈ n
2⌉) + f (n).

▶ If f (n) = O(nh) for some h < 1, then C(n) = O(n).
▶ If f (n) = O(n logh n) for h ≥ 0, then C(n) = O(n logh+1 n).

▶ The length of the coefficients in M(w) grows linearly in n = |w|.
▶ The cost of multiplying M(w1) ·M(w2) is O(n log n).

Worst case bit complexity (Olshanskii and Shpilrain 2025)

DCΣ has worst case bit complexity O(n log2 n).

– The Master Theorem –

The Master Theorem
Suppose C(n) satisfies C(n) = C(⌊ n

2⌋) + C(⌈ n
2⌉) + f (n).

▶ If f (n) = O(nh) for some h < 1, then C(n) = O(n).
▶ If f (n) = O(n logh n) for h ≥ 0, then C(n) = O(n logh+1 n).

▶ The length of the coefficients in M(w) grows linearly in n = |w|.

▶ The cost of multiplying M(w1) ·M(w2) is O(n log n).

Worst case bit complexity (Olshanskii and Shpilrain 2025)

DCΣ has worst case bit complexity O(n log2 n).

– The Master Theorem –

The Master Theorem
Suppose C(n) satisfies C(n) = C(⌊ n

2⌋) + C(⌈ n
2⌉) + f (n).

▶ If f (n) = O(nh) for some h < 1, then C(n) = O(n).
▶ If f (n) = O(n logh n) for h ≥ 0, then C(n) = O(n logh+1 n).

▶ The length of the coefficients in M(w) grows linearly in n = |w|.
▶ The cost of multiplying M(w1) ·M(w2) is O(n log n).

Worst case bit complexity (Olshanskii and Shpilrain 2025)

DCΣ has worst case bit complexity O(n log2 n).

– The Master Theorem –

The Master Theorem
Suppose C(n) satisfies C(n) = C(⌊ n

2⌋) + C(⌈ n
2⌉) + f (n).

▶ If f (n) = O(nh) for some h < 1, then C(n) = O(n).
▶ If f (n) = O(n logh n) for h ≥ 0, then C(n) = O(n logh+1 n).

▶ The length of the coefficients in M(w) grows linearly in n = |w|.
▶ The cost of multiplying M(w1) ·M(w2) is O(n log n).

Worst case bit complexity (Olshanskii and Shpilrain 2025)

DCΣ has worst case bit complexity O(n log2 n).

– Special cases with linear worst-case complexity –

▶ If H = ⟨Σ⟩ is finite

▶ the lengths of the coefficients of the matrices of H are bounded,
▶ the multiplication M(w1) ·M(w2) costs O(1),
▶ DCΣ has linear complexity.

▶ If Σ contains only upper-triangular matrices,

▶ the (i, j)-coefficients grow polynomially in n (in O(nj−i)),
▶ so their lengths grow logarithmically in n,
▶ DCΣ has linear complexity.
▶ Application to the Word Problem in finitely generated nilpotent

groups (Olshanskii and Shpilrain 2025).

▶ The same algorithm in GLd(Z/mZ) computes the mod m
projection of M(w), written M(w)m.

▶ If m is fixed, multiplication M(w1)m ·M(w2)m costs O(1),
▶ DCm computes M(w)m in linear time.

– Special cases with linear worst-case complexity –

▶ If H = ⟨Σ⟩ is finite
▶ the lengths of the coefficients of the matrices of H are bounded,

▶ the multiplication M(w1) ·M(w2) costs O(1),
▶ DCΣ has linear complexity.

▶ If Σ contains only upper-triangular matrices,

▶ the (i, j)-coefficients grow polynomially in n (in O(nj−i)),
▶ so their lengths grow logarithmically in n,
▶ DCΣ has linear complexity.
▶ Application to the Word Problem in finitely generated nilpotent

groups (Olshanskii and Shpilrain 2025).

▶ The same algorithm in GLd(Z/mZ) computes the mod m
projection of M(w), written M(w)m.

▶ If m is fixed, multiplication M(w1)m ·M(w2)m costs O(1),
▶ DCm computes M(w)m in linear time.

– Special cases with linear worst-case complexity –

▶ If H = ⟨Σ⟩ is finite
▶ the lengths of the coefficients of the matrices of H are bounded,
▶ the multiplication M(w1) ·M(w2) costs O(1),

▶ DCΣ has linear complexity.
▶ If Σ contains only upper-triangular matrices,

▶ the (i, j)-coefficients grow polynomially in n (in O(nj−i)),
▶ so their lengths grow logarithmically in n,
▶ DCΣ has linear complexity.
▶ Application to the Word Problem in finitely generated nilpotent

groups (Olshanskii and Shpilrain 2025).

▶ The same algorithm in GLd(Z/mZ) computes the mod m
projection of M(w), written M(w)m.

▶ If m is fixed, multiplication M(w1)m ·M(w2)m costs O(1),
▶ DCm computes M(w)m in linear time.

– Special cases with linear worst-case complexity –

▶ If H = ⟨Σ⟩ is finite
▶ the lengths of the coefficients of the matrices of H are bounded,
▶ the multiplication M(w1) ·M(w2) costs O(1),
▶ DCΣ has linear complexity.

▶ If Σ contains only upper-triangular matrices,

▶ the (i, j)-coefficients grow polynomially in n (in O(nj−i)),
▶ so their lengths grow logarithmically in n,
▶ DCΣ has linear complexity.
▶ Application to the Word Problem in finitely generated nilpotent

groups (Olshanskii and Shpilrain 2025).

▶ The same algorithm in GLd(Z/mZ) computes the mod m
projection of M(w), written M(w)m.

▶ If m is fixed, multiplication M(w1)m ·M(w2)m costs O(1),
▶ DCm computes M(w)m in linear time.

– Special cases with linear worst-case complexity –

▶ If H = ⟨Σ⟩ is finite
▶ the lengths of the coefficients of the matrices of H are bounded,
▶ the multiplication M(w1) ·M(w2) costs O(1),
▶ DCΣ has linear complexity.

▶ If Σ contains only upper-triangular matrices,

▶ the (i, j)-coefficients grow polynomially in n (in O(nj−i)),
▶ so their lengths grow logarithmically in n,
▶ DCΣ has linear complexity.
▶ Application to the Word Problem in finitely generated nilpotent

groups (Olshanskii and Shpilrain 2025).
▶ The same algorithm in GLd(Z/mZ) computes the mod m

projection of M(w), written M(w)m.

▶ If m is fixed, multiplication M(w1)m ·M(w2)m costs O(1),
▶ DCm computes M(w)m in linear time.

– Special cases with linear worst-case complexity –

▶ If H = ⟨Σ⟩ is finite
▶ the lengths of the coefficients of the matrices of H are bounded,
▶ the multiplication M(w1) ·M(w2) costs O(1),
▶ DCΣ has linear complexity.

▶ If Σ contains only upper-triangular matrices,
▶ the (i, j)-coefficients grow polynomially in n (in O(nj−i)),

▶ so their lengths grow logarithmically in n,
▶ DCΣ has linear complexity.
▶ Application to the Word Problem in finitely generated nilpotent

groups (Olshanskii and Shpilrain 2025).
▶ The same algorithm in GLd(Z/mZ) computes the mod m

projection of M(w), written M(w)m.

▶ If m is fixed, multiplication M(w1)m ·M(w2)m costs O(1),
▶ DCm computes M(w)m in linear time.

– Special cases with linear worst-case complexity –

▶ If H = ⟨Σ⟩ is finite
▶ the lengths of the coefficients of the matrices of H are bounded,
▶ the multiplication M(w1) ·M(w2) costs O(1),
▶ DCΣ has linear complexity.

▶ If Σ contains only upper-triangular matrices,
▶ the (i, j)-coefficients grow polynomially in n (in O(nj−i)),
▶ so their lengths grow logarithmically in n,

▶ DCΣ has linear complexity.
▶ Application to the Word Problem in finitely generated nilpotent

groups (Olshanskii and Shpilrain 2025).
▶ The same algorithm in GLd(Z/mZ) computes the mod m

projection of M(w), written M(w)m.

▶ If m is fixed, multiplication M(w1)m ·M(w2)m costs O(1),
▶ DCm computes M(w)m in linear time.

– Special cases with linear worst-case complexity –

▶ If H = ⟨Σ⟩ is finite
▶ the lengths of the coefficients of the matrices of H are bounded,
▶ the multiplication M(w1) ·M(w2) costs O(1),
▶ DCΣ has linear complexity.

▶ If Σ contains only upper-triangular matrices,
▶ the (i, j)-coefficients grow polynomially in n (in O(nj−i)),
▶ so their lengths grow logarithmically in n,
▶ DCΣ has linear complexity.

▶ Application to the Word Problem in finitely generated nilpotent
groups (Olshanskii and Shpilrain 2025).

▶ The same algorithm in GLd(Z/mZ) computes the mod m
projection of M(w), written M(w)m.

▶ If m is fixed, multiplication M(w1)m ·M(w2)m costs O(1),
▶ DCm computes M(w)m in linear time.

– Special cases with linear worst-case complexity –

▶ If H = ⟨Σ⟩ is finite
▶ the lengths of the coefficients of the matrices of H are bounded,
▶ the multiplication M(w1) ·M(w2) costs O(1),
▶ DCΣ has linear complexity.

▶ If Σ contains only upper-triangular matrices,
▶ the (i, j)-coefficients grow polynomially in n (in O(nj−i)),
▶ so their lengths grow logarithmically in n,
▶ DCΣ has linear complexity.
▶ Application to the Word Problem in finitely generated nilpotent

groups (Olshanskii and Shpilrain 2025).

▶ The same algorithm in GLd(Z/mZ) computes the mod m
projection of M(w), written M(w)m.

▶ If m is fixed, multiplication M(w1)m ·M(w2)m costs O(1),
▶ DCm computes M(w)m in linear time.

– Special cases with linear worst-case complexity –

▶ If H = ⟨Σ⟩ is finite
▶ the lengths of the coefficients of the matrices of H are bounded,
▶ the multiplication M(w1) ·M(w2) costs O(1),
▶ DCΣ has linear complexity.

▶ If Σ contains only upper-triangular matrices,
▶ the (i, j)-coefficients grow polynomially in n (in O(nj−i)),
▶ so their lengths grow logarithmically in n,
▶ DCΣ has linear complexity.
▶ Application to the Word Problem in finitely generated nilpotent

groups (Olshanskii and Shpilrain 2025).
▶ The same algorithm in GLd(Z/mZ) computes the mod m

projection of M(w), written M(w)m.

▶ If m is fixed, multiplication M(w1)m ·M(w2)m costs O(1),
▶ DCm computes M(w)m in linear time.

– Special cases with linear worst-case complexity –

▶ If H = ⟨Σ⟩ is finite
▶ the lengths of the coefficients of the matrices of H are bounded,
▶ the multiplication M(w1) ·M(w2) costs O(1),
▶ DCΣ has linear complexity.

▶ If Σ contains only upper-triangular matrices,
▶ the (i, j)-coefficients grow polynomially in n (in O(nj−i)),
▶ so their lengths grow logarithmically in n,
▶ DCΣ has linear complexity.
▶ Application to the Word Problem in finitely generated nilpotent

groups (Olshanskii and Shpilrain 2025).
▶ The same algorithm in GLd(Z/mZ) computes the mod m

projection of M(w), written M(w)m.
▶ If m is fixed, multiplication M(w1)m ·M(w2)m costs O(1),

▶ DCm computes M(w)m in linear time.

– Special cases with linear worst-case complexity –

▶ If H = ⟨Σ⟩ is finite
▶ the lengths of the coefficients of the matrices of H are bounded,
▶ the multiplication M(w1) ·M(w2) costs O(1),
▶ DCΣ has linear complexity.

▶ If Σ contains only upper-triangular matrices,
▶ the (i, j)-coefficients grow polynomially in n (in O(nj−i)),
▶ so their lengths grow logarithmically in n,
▶ DCΣ has linear complexity.
▶ Application to the Word Problem in finitely generated nilpotent

groups (Olshanskii and Shpilrain 2025).
▶ The same algorithm in GLd(Z/mZ) computes the mod m

projection of M(w), written M(w)m.
▶ If m is fixed, multiplication M(w1)m ·M(w2)m costs O(1),
▶ DCm computes M(w)m in linear time.

– Towards an algorithm with O(n) average-case complexity –

▶ A natural idea:

▶ Compute M(w) modulo q.
▶ If M(w)q ̸= Id, then M(w) ̸= Id;

else run Algorithm DC on w.

▶ For a fixed q, the probability of M(w)q = Id may tend to a
constant, so the average-case complexity is still O(n log2 n).

▶ So: take q = q(n), a function of the length of w.
▶ Arithmetic operations in Z/q(n)Z cost O(log q(n) log log q(n)).
▶ The function q(n) must grow

▶ sufficiently slow, so M(w)q(n) is computed quickly, and
multiplication mod q(n) is fast

▶ and sufficiently fast, so the probability that M(w)q(n) = Id is low.

– Towards an algorithm with O(n) average-case complexity –

▶ A natural idea:
▶ Compute M(w) modulo q.

▶ If M(w)q ̸= Id, then M(w) ̸= Id;
else run Algorithm DC on w.

▶ For a fixed q, the probability of M(w)q = Id may tend to a
constant, so the average-case complexity is still O(n log2 n).

▶ So: take q = q(n), a function of the length of w.
▶ Arithmetic operations in Z/q(n)Z cost O(log q(n) log log q(n)).
▶ The function q(n) must grow

▶ sufficiently slow, so M(w)q(n) is computed quickly, and
multiplication mod q(n) is fast

▶ and sufficiently fast, so the probability that M(w)q(n) = Id is low.

– Towards an algorithm with O(n) average-case complexity –

▶ A natural idea:
▶ Compute M(w) modulo q.
▶ If M(w)q ̸= Id, then M(w) ̸= Id;

else run Algorithm DC on w.

▶ For a fixed q, the probability of M(w)q = Id may tend to a
constant, so the average-case complexity is still O(n log2 n).

▶ So: take q = q(n), a function of the length of w.
▶ Arithmetic operations in Z/q(n)Z cost O(log q(n) log log q(n)).
▶ The function q(n) must grow

▶ sufficiently slow, so M(w)q(n) is computed quickly, and
multiplication mod q(n) is fast

▶ and sufficiently fast, so the probability that M(w)q(n) = Id is low.

– Towards an algorithm with O(n) average-case complexity –

▶ A natural idea:
▶ Compute M(w) modulo q.
▶ If M(w)q ̸= Id, then M(w) ̸= Id;

else run Algorithm DC on w.

▶ For a fixed q, the probability of M(w)q = Id may tend to a
constant, so the average-case complexity is still O(n log2 n).

▶ So: take q = q(n), a function of the length of w.
▶ Arithmetic operations in Z/q(n)Z cost O(log q(n) log log q(n)).
▶ The function q(n) must grow

▶ sufficiently slow, so M(w)q(n) is computed quickly, and
multiplication mod q(n) is fast

▶ and sufficiently fast, so the probability that M(w)q(n) = Id is low.

– Towards an algorithm with O(n) average-case complexity –

▶ A natural idea:
▶ Compute M(w) modulo q.
▶ If M(w)q ̸= Id, then M(w) ̸= Id;

else run Algorithm DC on w.

▶ For a fixed q, the probability of M(w)q = Id may tend to a
constant, so the average-case complexity is still O(n log2 n).

▶ So: take q = q(n), a function of the length of w.

▶ Arithmetic operations in Z/q(n)Z cost O(log q(n) log log q(n)).
▶ The function q(n) must grow

▶ sufficiently slow, so M(w)q(n) is computed quickly, and
multiplication mod q(n) is fast

▶ and sufficiently fast, so the probability that M(w)q(n) = Id is low.

– Towards an algorithm with O(n) average-case complexity –

▶ A natural idea:
▶ Compute M(w) modulo q.
▶ If M(w)q ̸= Id, then M(w) ̸= Id;

else run Algorithm DC on w.

▶ For a fixed q, the probability of M(w)q = Id may tend to a
constant, so the average-case complexity is still O(n log2 n).

▶ So: take q = q(n), a function of the length of w.
▶ Arithmetic operations in Z/q(n)Z cost O(log q(n) log log q(n)).

▶ The function q(n) must grow

▶ sufficiently slow, so M(w)q(n) is computed quickly, and
multiplication mod q(n) is fast

▶ and sufficiently fast, so the probability that M(w)q(n) = Id is low.

– Towards an algorithm with O(n) average-case complexity –

▶ A natural idea:
▶ Compute M(w) modulo q.
▶ If M(w)q ̸= Id, then M(w) ̸= Id;

else run Algorithm DC on w.

▶ For a fixed q, the probability of M(w)q = Id may tend to a
constant, so the average-case complexity is still O(n log2 n).

▶ So: take q = q(n), a function of the length of w.
▶ Arithmetic operations in Z/q(n)Z cost O(log q(n) log log q(n)).
▶ The function q(n) must grow

▶ sufficiently slow, so M(w)q(n) is computed quickly, and
multiplication mod q(n) is fast

▶ and sufficiently fast, so the probability that M(w)q(n) = Id is low.

– Towards an algorithm with O(n) average-case complexity –

▶ A natural idea:
▶ Compute M(w) modulo q.
▶ If M(w)q ̸= Id, then M(w) ̸= Id;

else run Algorithm DC on w.

▶ For a fixed q, the probability of M(w)q = Id may tend to a
constant, so the average-case complexity is still O(n log2 n).

▶ So: take q = q(n), a function of the length of w.
▶ Arithmetic operations in Z/q(n)Z cost O(log q(n) log log q(n)).
▶ The function q(n) must grow

▶ sufficiently slow, so M(w)q(n) is computed quickly, and
multiplication mod q(n) is fast

▶ and sufficiently fast, so the probability that M(w)q(n) = Id is low.

– Towards an algorithm with O(n) average-case complexity –

▶ A natural idea:
▶ Compute M(w) modulo q.
▶ If M(w)q ̸= Id, then M(w) ̸= Id;

else run Algorithm DC on w.

▶ For a fixed q, the probability of M(w)q = Id may tend to a
constant, so the average-case complexity is still O(n log2 n).

▶ So: take q = q(n), a function of the length of w.
▶ Arithmetic operations in Z/q(n)Z cost O(log q(n) log log q(n)).
▶ The function q(n) must grow

▶ sufficiently slow, so M(w)q(n) is computed quickly, and
multiplication mod q(n) is fast

▶ and sufficiently fast, so the probability that M(w)q(n) = Id is low.

– Main result : Algorithm QuickWP –

Algorithm 3: Algorithm QuickWP
Input : a sequence w of n elements of Σ̃
Output: True if M(w) = Id, and False otherwise

1 Compute q(n) =
∏

p where p runs over prime numbers ≤ log5 n.
2

3 if DCΣ,q(n)(w) ̸= Id then
4 return False
5 else
6 if DCΣ(w) ̸= Id then
7 return False
8 else
9 return True

Theorem (Bassino, Nicaud and Weil 2025)

For uniform distribution over words of given length over Σ̃, QuickWP
solves the word problem with linear bit complexity in average.

– Main result : Algorithm QuickWP –

Algorithm 4: Algorithm QuickWP
Input : a sequence w of n elements of Σ̃
Output: True if M(w) = Id, and False otherwise

1 Compute q(n) =
∏

p where p runs over prime numbers ≤ log5 n.
2

3 if DCΣ,q(n)(w) ̸= Id then
4 return False
5 else
6 if DCΣ(w) ̸= Id then
7 return False
8 else
9 return True

Theorem (Bassino, Nicaud and Weil 2025)

For uniform distribution over words of given length over Σ̃, QuickWP
solves the word problem with linear bit complexity in average.

– Remarks on the main result –

▶ Algorithm QuickWP makes no assumption on the algebraic or
combinatorial properties of Σ or the subgroup H = ⟨Σ⟩.

▶ The same algorithm is run, with linear average-case complexity,
whether Σ consists of triangular matrices or not, and whether H
is finite or infinite.

▶ The latter property is decidable (Jacob 1978) in polynomial time
(Babai, Beals and Rockmore 1993).

▶ The same algorithm is run, with the same average-case
complexity whether H has polynomial or exponential growth, or
whether it is nilpotent, polycyclic or virtually solvable.

▶ In the latter two situations, there is a linear average-case
complexity for the Word Problem, using the properties of these
subgroups (Olshanskii and Shpilrain 2025).

– Remarks on the main result –

▶ Algorithm QuickWP makes no assumption on the algebraic or
combinatorial properties of Σ or the subgroup H = ⟨Σ⟩.

▶ The same algorithm is run, with linear average-case complexity,
whether Σ consists of triangular matrices or not, and whether H
is finite or infinite.

▶ The latter property is decidable (Jacob 1978) in polynomial time
(Babai, Beals and Rockmore 1993).

▶ The same algorithm is run, with the same average-case
complexity whether H has polynomial or exponential growth, or
whether it is nilpotent, polycyclic or virtually solvable.

▶ In the latter two situations, there is a linear average-case
complexity for the Word Problem, using the properties of these
subgroups (Olshanskii and Shpilrain 2025).

– Remarks on the main result –

▶ Algorithm QuickWP makes no assumption on the algebraic or
combinatorial properties of Σ or the subgroup H = ⟨Σ⟩.

▶ The same algorithm is run, with linear average-case complexity,
whether Σ consists of triangular matrices or not, and whether H
is finite or infinite.

▶ The latter property is decidable (Jacob 1978) in polynomial time
(Babai, Beals and Rockmore 1993).

▶ The same algorithm is run, with the same average-case
complexity whether H has polynomial or exponential growth, or
whether it is nilpotent, polycyclic or virtually solvable.

▶ In the latter two situations, there is a linear average-case
complexity for the Word Problem, using the properties of these
subgroups (Olshanskii and Shpilrain 2025).

– Remarks on the main result –

▶ Algorithm QuickWP makes no assumption on the algebraic or
combinatorial properties of Σ or the subgroup H = ⟨Σ⟩.

▶ The same algorithm is run, with linear average-case complexity,
whether Σ consists of triangular matrices or not, and whether H
is finite or infinite.

▶ The latter property is decidable (Jacob 1978) in polynomial time
(Babai, Beals and Rockmore 1993).

▶ The same algorithm is run, with the same average-case
complexity whether H has polynomial or exponential growth, or
whether it is nilpotent, polycyclic or virtually solvable.

▶ In the latter two situations, there is a linear average-case
complexity for the Word Problem, using the properties of these
subgroups (Olshanskii and Shpilrain 2025).

– Remarks on the main result –

▶ Algorithm QuickWP makes no assumption on the algebraic or
combinatorial properties of Σ or the subgroup H = ⟨Σ⟩.

▶ The same algorithm is run, with linear average-case complexity,
whether Σ consists of triangular matrices or not, and whether H
is finite or infinite.

▶ The latter property is decidable (Jacob 1978) in polynomial time
(Babai, Beals and Rockmore 1993).

▶ The same algorithm is run, with the same average-case
complexity whether H has polynomial or exponential growth, or
whether it is nilpotent, polycyclic or virtually solvable.

▶ In the latter two situations, there is a linear average-case
complexity for the Word Problem, using the properties of these
subgroups (Olshanskii and Shpilrain 2025).

– Average-case complexity of Algorithm QuickWP –

▶ Since
q(n) =

∏
p ≤ log5 n

p prime

p ≤ log5 log5 n n,

ℓ(q(n)) = polylog(n), q(n) is computed in polylog(n) and the
computations in Z/q(n)Z take polylog(n) time.

▶ By the Master Theorem, DCΣ,q(n) runs in O(n) time.
▶ As a result, the average-case complexity of QuickWP is

O
(
n + Pn n log2 n

)
where Pn is the probability that M(w)q(n) = Id.

▶ If H = ⟨Σ⟩ is finite, QuickWP runs in linear time.
▶ We need to show that, if H is infinite, then Pn = O(log−2 n).

– Average-case complexity of Algorithm QuickWP –

▶ Since
q(n) =

∏
p ≤ log5 n

p prime

p ≤ log5 log5 n n,

ℓ(q(n)) = polylog(n), q(n) is computed in polylog(n) and the
computations in Z/q(n)Z take polylog(n) time.

▶ By the Master Theorem, DCΣ,q(n) runs in O(n) time.

▶ As a result, the average-case complexity of QuickWP is

O
(
n + Pn n log2 n

)
where Pn is the probability that M(w)q(n) = Id.

▶ If H = ⟨Σ⟩ is finite, QuickWP runs in linear time.
▶ We need to show that, if H is infinite, then Pn = O(log−2 n).

– Average-case complexity of Algorithm QuickWP –

▶ Since
q(n) =

∏
p ≤ log5 n

p prime

p ≤ log5 log5 n n,

ℓ(q(n)) = polylog(n), q(n) is computed in polylog(n) and the
computations in Z/q(n)Z take polylog(n) time.

▶ By the Master Theorem, DCΣ,q(n) runs in O(n) time.
▶ As a result, the average-case complexity of QuickWP is

O
(
n + Pn n log2 n

)
where Pn is the probability that M(w)q(n) = Id.

▶ If H = ⟨Σ⟩ is finite, QuickWP runs in linear time.
▶ We need to show that, if H is infinite, then Pn = O(log−2 n).

– Average-case complexity of Algorithm QuickWP –

▶ Since
q(n) =

∏
p ≤ log5 n

p prime

p ≤ log5 log5 n n,

ℓ(q(n)) = polylog(n), q(n) is computed in polylog(n) and the
computations in Z/q(n)Z take polylog(n) time.

▶ By the Master Theorem, DCΣ,q(n) runs in O(n) time.
▶ As a result, the average-case complexity of QuickWP is

O
(
n + Pn n log2 n

)
where Pn is the probability that M(w)q(n) = Id.

▶ If H = ⟨Σ⟩ is finite, QuickWP runs in linear time.

▶ We need to show that, if H is infinite, then Pn = O(log−2 n).

– Average-case complexity of Algorithm QuickWP –

▶ Since
q(n) =

∏
p ≤ log5 n

p prime

p ≤ log5 log5 n n,

ℓ(q(n)) = polylog(n), q(n) is computed in polylog(n) and the
computations in Z/q(n)Z take polylog(n) time.

▶ By the Master Theorem, DCΣ,q(n) runs in O(n) time.
▶ As a result, the average-case complexity of QuickWP is

O
(
n + Pn n log2 n

)
where Pn is the probability that M(w)q(n) = Id.

▶ If H = ⟨Σ⟩ is finite, QuickWP runs in linear time.
▶ We need to show that, if H is infinite, then Pn = O(log−2 n).

– Random words and Markov chain –

▶ We want to show that Pn(M(w)q(n) = Id) is O(log−2 n).

▶ |Σ| = k, H = ⟨Σ⟩, m ≥ 2, Hm = projection mod m of H.
▶ Assumptions: Σ ∩ Σ−1 = ∅, and m sufficiently large: distinct

elements of Σ̃ are distinct mod m.
▶ The matrices M(w)m are produced by the length n trajectories in

the Markov chain Um such that:

▶ The state set of Um is the subgroup Hm.

▶ There is an edge M
1
2k−→ M′ if and only if ∃A ∈ Σ̃ such that

M A = M′.
▶ The initial vector assigns 1 to Id and 0 to the other states.

– Random words and Markov chain –

▶ We want to show that Pn(M(w)q(n) = Id) is O(log−2 n).
▶ |Σ| = k, H = ⟨Σ⟩, m ≥ 2, Hm = projection mod m of H.

▶ Assumptions: Σ ∩ Σ−1 = ∅, and m sufficiently large: distinct
elements of Σ̃ are distinct mod m.

▶ The matrices M(w)m are produced by the length n trajectories in
the Markov chain Um such that:

▶ The state set of Um is the subgroup Hm.

▶ There is an edge M
1
2k−→ M′ if and only if ∃A ∈ Σ̃ such that

M A = M′.
▶ The initial vector assigns 1 to Id and 0 to the other states.

– Random words and Markov chain –

▶ We want to show that Pn(M(w)q(n) = Id) is O(log−2 n).
▶ |Σ| = k, H = ⟨Σ⟩, m ≥ 2, Hm = projection mod m of H.
▶ Assumptions: Σ ∩ Σ−1 = ∅, and m sufficiently large: distinct

elements of Σ̃ are distinct mod m.

▶ The matrices M(w)m are produced by the length n trajectories in
the Markov chain Um such that:

▶ The state set of Um is the subgroup Hm.

▶ There is an edge M
1
2k−→ M′ if and only if ∃A ∈ Σ̃ such that

M A = M′.
▶ The initial vector assigns 1 to Id and 0 to the other states.

– Random words and Markov chain –

▶ We want to show that Pn(M(w)q(n) = Id) is O(log−2 n).
▶ |Σ| = k, H = ⟨Σ⟩, m ≥ 2, Hm = projection mod m of H.
▶ Assumptions: Σ ∩ Σ−1 = ∅, and m sufficiently large: distinct

elements of Σ̃ are distinct mod m.
▶ The matrices M(w)m are produced by the length n trajectories in

the Markov chain Um such that:

▶ The state set of Um is the subgroup Hm.

▶ There is an edge M
1
2k−→ M′ if and only if ∃A ∈ Σ̃ such that

M A = M′.
▶ The initial vector assigns 1 to Id and 0 to the other states.

– Random words and Markov chain –

▶ We want to show that Pn(M(w)q(n) = Id) is O(log−2 n).
▶ |Σ| = k, H = ⟨Σ⟩, m ≥ 2, Hm = projection mod m of H.
▶ Assumptions: Σ ∩ Σ−1 = ∅, and m sufficiently large: distinct

elements of Σ̃ are distinct mod m.
▶ The matrices M(w)m are produced by the length n trajectories in

the Markov chain Um such that:
▶ The state set of Um is the subgroup Hm.

▶ There is an edge M
1
2k−→ M′ if and only if ∃A ∈ Σ̃ such that

M A = M′.
▶ The initial vector assigns 1 to Id and 0 to the other states.

– Random words and Markov chain –

▶ We want to show that Pn(M(w)q(n) = Id) is O(log−2 n).
▶ |Σ| = k, H = ⟨Σ⟩, m ≥ 2, Hm = projection mod m of H.
▶ Assumptions: Σ ∩ Σ−1 = ∅, and m sufficiently large: distinct

elements of Σ̃ are distinct mod m.
▶ The matrices M(w)m are produced by the length n trajectories in

the Markov chain Um such that:
▶ The state set of Um is the subgroup Hm.

▶ There is an edge M
1
2k−→ M′ if and only if ∃A ∈ Σ̃ such that

M A = M′.

▶ The initial vector assigns 1 to Id and 0 to the other states.

– Random words and Markov chain –

▶ We want to show that Pn(M(w)q(n) = Id) is O(log−2 n).
▶ |Σ| = k, H = ⟨Σ⟩, m ≥ 2, Hm = projection mod m of H.
▶ Assumptions: Σ ∩ Σ−1 = ∅, and m sufficiently large: distinct

elements of Σ̃ are distinct mod m.
▶ The matrices M(w)m are produced by the length n trajectories in

the Markov chain Um such that:
▶ The state set of Um is the subgroup Hm.

▶ There is an edge M
1
2k−→ M′ if and only if ∃A ∈ Σ̃ such that

M A = M′.
▶ The initial vector assigns 1 to Id and 0 to the other states.

– Properties of Um –

Let Pm be the matrix of transition of Um.
▶ Since Pm is symmetric, the uniform distribution is a stationnary

distribution of Um.

▶ Since Pm is irreducible, it is the only stationnary distribution.
▶ But Pm maybe not aperiodic : as there are length 2 circuits in Um,

the period is 1 or 2.

– Properties of Um –

Let Pm be the matrix of transition of Um.
▶ Since Pm is symmetric, the uniform distribution is a stationnary

distribution of Um.
▶ Since Pm is irreducible, it is the only stationnary distribution.

▶ But Pm maybe not aperiodic : as there are length 2 circuits in Um,
the period is 1 or 2.

– Properties of Um –

Let Pm be the matrix of transition of Um.
▶ Since Pm is symmetric, the uniform distribution is a stationnary

distribution of Um.
▶ Since Pm is irreducible, it is the only stationnary distribution.
▶ But Pm maybe not aperiodic : as there are length 2 circuits in Um,

the period is 1 or 2.

– A symmetric primitive Markov chain –

▶ U2
m is symmetric and aperiodic, but maybe not irreducible: let

H̃m be the set of states accessible from Id in U2
m.

▶ if Um has period 2, then U2
m splits its state set Hm into two

disjoint Markov chains — one on H̃m and one on the states at
odd distance from Id.

▶ H̃m = ⟨Σ̃2⟩ is equal to Hm or to an index 2 subgroup of Hm:
|H̃m| ≥ 1

2 |Hm|.
▶ Ũm = the restriction of Um to H̃m, with transition matrix P̃m.
▶ Then Ũm is primitive and symmetric, and for any distribution µ,

µP̃n
m converges to the uniform distribution

(
1

|H̃m|

)
.

– A symmetric primitive Markov chain –

▶ U2
m is symmetric and aperiodic, but maybe not irreducible: let

H̃m be the set of states accessible from Id in U2
m.

▶ if Um has period 2, then U2
m splits its state set Hm into two

disjoint Markov chains — one on H̃m and one on the states at
odd distance from Id.

▶ H̃m = ⟨Σ̃2⟩ is equal to Hm or to an index 2 subgroup of Hm:
|H̃m| ≥ 1

2 |Hm|.
▶ Ũm = the restriction of Um to H̃m, with transition matrix P̃m.
▶ Then Ũm is primitive and symmetric, and for any distribution µ,

µP̃n
m converges to the uniform distribution

(
1

|H̃m|

)
.

– A symmetric primitive Markov chain –

▶ U2
m is symmetric and aperiodic, but maybe not irreducible: let

H̃m be the set of states accessible from Id in U2
m.

▶ if Um has period 2, then U2
m splits its state set Hm into two

disjoint Markov chains — one on H̃m and one on the states at
odd distance from Id.

▶ H̃m = ⟨Σ̃2⟩ is equal to Hm or to an index 2 subgroup of Hm:
|H̃m| ≥ 1

2 |Hm|.

▶ Ũm = the restriction of Um to H̃m, with transition matrix P̃m.
▶ Then Ũm is primitive and symmetric, and for any distribution µ,

µP̃n
m converges to the uniform distribution

(
1

|H̃m|

)
.

– A symmetric primitive Markov chain –

▶ U2
m is symmetric and aperiodic, but maybe not irreducible: let

H̃m be the set of states accessible from Id in U2
m.

▶ if Um has period 2, then U2
m splits its state set Hm into two

disjoint Markov chains — one on H̃m and one on the states at
odd distance from Id.

▶ H̃m = ⟨Σ̃2⟩ is equal to Hm or to an index 2 subgroup of Hm:
|H̃m| ≥ 1

2 |Hm|.
▶ Ũm = the restriction of Um to H̃m, with transition matrix P̃m.

▶ Then Ũm is primitive and symmetric, and for any distribution µ,
µP̃n

m converges to the uniform distribution
(

1
|H̃m|

)
.

– A symmetric primitive Markov chain –

▶ U2
m is symmetric and aperiodic, but maybe not irreducible: let

H̃m be the set of states accessible from Id in U2
m.

▶ if Um has period 2, then U2
m splits its state set Hm into two

disjoint Markov chains — one on H̃m and one on the states at
odd distance from Id.

▶ H̃m = ⟨Σ̃2⟩ is equal to Hm or to an index 2 subgroup of Hm:
|H̃m| ≥ 1

2 |Hm|.
▶ Ũm = the restriction of Um to H̃m, with transition matrix P̃m.
▶ Then Ũm is primitive and symmetric, and for any distribution µ,

µP̃n
m converges to the uniform distribution

(
1

|H̃m|

)
.

– The rate of convergence –

Rate of convergence

The distribution P̃n
m(Id, ·), reached after n random steps starting at Id

satisfies∥∥∥∥P̃n
m(Id, ·)−

1
|H̃m|

∥∥∥∥
Var
≤ 1

2

√
|H̃m|

(
1− 1

4k2|H̃m|2

)n

.

▶ The proof uses results on the second largest and on the least
eigenvalues of P̃m (Diaconis and Stroock 1991).

▶ Now let’s go back to computations mod m = q(n) and evaluate
|H̃q(n)|.

– The rate of convergence –

Rate of convergence

The distribution P̃n
m(Id, ·), reached after n random steps starting at Id

satisfies∥∥∥∥P̃n
m(Id, ·)−

1
|H̃m|

∥∥∥∥
Var
≤ 1

2

√
|H̃m|

(
1− 1

4k2|H̃m|2

)n

.

▶ The proof uses results on the second largest and on the least
eigenvalues of P̃m (Diaconis and Stroock 1991).

▶ Now let’s go back to computations mod m = q(n) and evaluate
|H̃q(n)|.

– The rate of convergence –

Rate of convergence

The distribution P̃n
m(Id, ·), reached after n random steps starting at Id

satisfies∥∥∥∥P̃n
m(Id, ·)−

1
|H̃m|

∥∥∥∥
Var
≤ 1

2

√
|H̃m|

(
1− 1

4k2|H̃m|2

)n

.

▶ The proof uses results on the second largest and on the least
eigenvalues of P̃m (Diaconis and Stroock 1991).

▶ Now let’s go back to computations mod m = q(n) and evaluate
|H̃q(n)|.

– An element of H of large order –

Order of an element
The order of an element A of a group is |⟨A⟩|. It is the smallest
positive integer ℓ such that Aℓ = Id.

▶ An infinite subgroup of GLd(Z) always contains a matrix of
infinite order (Schur 1911). So H = ⟨Σ⟩ contains a matrix A
with infinite order.

An element of at least logarithmic order

Let A ∈ GLd(Z) with infinite order. If n is large enough, q(n) has a
prime factor p such that Ap has order > 2 log2 n.

▶ Let A ∈ GLd(Z) of infinite order. The number of primes p such
that Ap has order ≤ L is O(L2) (Kurberg, 2003).

▶ There are O(log4 n) primes p such that Ap has order ≤ 2 log2 n,
and q(n) is the product of the primes ≤ log5 n — of which there
are, asymptotically, ∼ log5 n

5 log log n .

– An element of H of large order –

Order of an element
The order of an element A of a group is |⟨A⟩|. It is the smallest
positive integer ℓ such that Aℓ = Id.

▶ An infinite subgroup of GLd(Z) always contains a matrix of
infinite order (Schur 1911). So H = ⟨Σ⟩ contains a matrix A
with infinite order.

An element of at least logarithmic order

Let A ∈ GLd(Z) with infinite order. If n is large enough, q(n) has a
prime factor p such that Ap has order > 2 log2 n.

▶ Let A ∈ GLd(Z) of infinite order. The number of primes p such
that Ap has order ≤ L is O(L2) (Kurberg, 2003).

▶ There are O(log4 n) primes p such that Ap has order ≤ 2 log2 n,
and q(n) is the product of the primes ≤ log5 n — of which there
are, asymptotically, ∼ log5 n

5 log log n .

– An element of H of large order –

Order of an element
The order of an element A of a group is |⟨A⟩|. It is the smallest
positive integer ℓ such that Aℓ = Id.

▶ An infinite subgroup of GLd(Z) always contains a matrix of
infinite order (Schur 1911). So H = ⟨Σ⟩ contains a matrix A
with infinite order.

An element of at least logarithmic order

Let A ∈ GLd(Z) with infinite order. If n is large enough, q(n) has a
prime factor p such that Ap has order > 2 log2 n.

▶ Let A ∈ GLd(Z) of infinite order. The number of primes p such
that Ap has order ≤ L is O(L2) (Kurberg, 2003).

▶ There are O(log4 n) primes p such that Ap has order ≤ 2 log2 n,
and q(n) is the product of the primes ≤ log5 n — of which there
are, asymptotically, ∼ log5 n

5 log log n .

– An element of H of large order –

Order of an element
The order of an element A of a group is |⟨A⟩|. It is the smallest
positive integer ℓ such that Aℓ = Id.

▶ An infinite subgroup of GLd(Z) always contains a matrix of
infinite order (Schur 1911). So H = ⟨Σ⟩ contains a matrix A
with infinite order.

An element of at least logarithmic order

Let A ∈ GLd(Z) with infinite order. If n is large enough, q(n) has a
prime factor p such that Ap has order > 2 log2 n.

▶ Let A ∈ GLd(Z) of infinite order. The number of primes p such
that Ap has order ≤ L is O(L2) (Kurberg, 2003).

▶ There are O(log4 n) primes p such that Ap has order ≤ 2 log2 n,
and q(n) is the product of the primes ≤ log5 n — of which there
are, asymptotically, ∼ log5 n

5 log log n .

– An element of H of large order –

Order of an element
The order of an element A of a group is |⟨A⟩|. It is the smallest
positive integer ℓ such that Aℓ = Id.

▶ An infinite subgroup of GLd(Z) always contains a matrix of
infinite order (Schur 1911). So H = ⟨Σ⟩ contains a matrix A
with infinite order.

An element of at least logarithmic order

Let A ∈ GLd(Z) with infinite order. If n is large enough, q(n) has a
prime factor p such that Ap has order > 2 log2 n.

▶ Let A ∈ GLd(Z) of infinite order. The number of primes p such
that Ap has order ≤ L is O(L2) (Kurberg, 2003).

▶ There are O(log4 n) primes p such that Ap has order ≤ 2 log2 n,
and q(n) is the product of the primes ≤ log5 n — of which there
are, asymptotically, ∼ log5 n

5 log log n .

– An element of H of large order –

An element of at least logarithmic order

Let A ∈ GLd(Z) with infinite order. If n is large enough, q(n) has a
prime factor p such that Ap has order > 2 log2 n.

▶ Let pn ≤ log5 n be a prime such that Apn has order > 2 log2 n.
▶ NB: We are not concerned with the value of the matrix A or the

prime pn, nor with how hard it would be to compute them.
▶ Then |H̃pn | ≥ 1

2 |Hpn | ≥ 1
2 |⟨Apn⟩| > log2 n.

▶ Also: |H̃pn | ≤ pd2

n ≤ log5d2
n.

– An element of H of large order –

An element of at least logarithmic order

Let A ∈ GLd(Z) with infinite order. If n is large enough, q(n) has a
prime factor p such that Ap has order > 2 log2 n.

▶ Let pn ≤ log5 n be a prime such that Apn has order > 2 log2 n.

▶ NB: We are not concerned with the value of the matrix A or the
prime pn, nor with how hard it would be to compute them.

▶ Then |H̃pn | ≥ 1
2 |Hpn | ≥ 1

2 |⟨Apn⟩| > log2 n.

▶ Also: |H̃pn | ≤ pd2

n ≤ log5d2
n.

– An element of H of large order –

An element of at least logarithmic order

Let A ∈ GLd(Z) with infinite order. If n is large enough, q(n) has a
prime factor p such that Ap has order > 2 log2 n.

▶ Let pn ≤ log5 n be a prime such that Apn has order > 2 log2 n.
▶ NB: We are not concerned with the value of the matrix A or the

prime pn, nor with how hard it would be to compute them.

▶ Then |H̃pn | ≥ 1
2 |Hpn | ≥ 1

2 |⟨Apn⟩| > log2 n.

▶ Also: |H̃pn | ≤ pd2

n ≤ log5d2
n.

– An element of H of large order –

An element of at least logarithmic order

Let A ∈ GLd(Z) with infinite order. If n is large enough, q(n) has a
prime factor p such that Ap has order > 2 log2 n.

▶ Let pn ≤ log5 n be a prime such that Apn has order > 2 log2 n.
▶ NB: We are not concerned with the value of the matrix A or the

prime pn, nor with how hard it would be to compute them.
▶ Then |H̃pn | ≥ 1

2 |Hpn | ≥ 1
2 |⟨Apn⟩| > log2 n.

▶ Also: |H̃pn | ≤ pd2

n ≤ log5d2
n.

– An element of H of large order –

An element of at least logarithmic order

Let A ∈ GLd(Z) with infinite order. If n is large enough, q(n) has a
prime factor p such that Ap has order > 2 log2 n.

▶ Let pn ≤ log5 n be a prime such that Apn has order > 2 log2 n.
▶ NB: We are not concerned with the value of the matrix A or the

prime pn, nor with how hard it would be to compute them.
▶ Then |H̃pn | ≥ 1

2 |Hpn | ≥ 1
2 |⟨Apn⟩| > log2 n.

▶ Also: |H̃pn | ≤ pd2

n ≤ log5d2
n.

– The probability that M(w)q(n) = Id is O(log−2 n) –

▶ We want to show that Pn(M(w)q(n) = Id) is O(log−2 n)

▶ Pn
q(n)(Id, Id) ≤ Pn

pn
(Id, Id).

▶ if n = 2ν, Pn
pn
(Id, Id) = P̃ν

pn
(Id, Id)

▶ P̃ν
pn
(Id, Id) ≤ 1

|H̃pn |
+ 1

2

√
|H̃pn |

(
1− 1

4k2|H̃pn |2

)ν

▶ P̃ν
pn
(Id, Id) ≤ 1

log2 n + 1
2

√
(log n)5d2 exp

(
n

8k2(log n)10d2

)
▶ that is O(log−2 n)

▶ If n = 2ν + 1, Pn
pn
(Id, Id) =

∑
h∈Hpn

P̃ν
pn
(Id, h)Ppn(h, Id)

▶ The second factor is non-zero for h = Bpn where B ∈ Σ̃: 2k
values, all equal to 1

2k
▶ so again O(log−2 n).

– The probability that M(w)q(n) = Id is O(log−2 n) –

▶ We want to show that Pn(M(w)q(n) = Id) is O(log−2 n)
▶ Pn

q(n)(Id, Id) ≤ Pn
pn
(Id, Id).

▶ if n = 2ν, Pn
pn
(Id, Id) = P̃ν

pn
(Id, Id)

▶ P̃ν
pn
(Id, Id) ≤ 1

|H̃pn |
+ 1

2

√
|H̃pn |

(
1− 1

4k2|H̃pn |2

)ν

▶ P̃ν
pn
(Id, Id) ≤ 1

log2 n + 1
2

√
(log n)5d2 exp

(
n

8k2(log n)10d2

)
▶ that is O(log−2 n)

▶ If n = 2ν + 1, Pn
pn
(Id, Id) =

∑
h∈Hpn

P̃ν
pn
(Id, h)Ppn(h, Id)

▶ The second factor is non-zero for h = Bpn where B ∈ Σ̃: 2k
values, all equal to 1

2k
▶ so again O(log−2 n).

– The probability that M(w)q(n) = Id is O(log−2 n) –

▶ We want to show that Pn(M(w)q(n) = Id) is O(log−2 n)
▶ Pn

q(n)(Id, Id) ≤ Pn
pn
(Id, Id).

▶ if n = 2ν, Pn
pn
(Id, Id) = P̃ν

pn
(Id, Id)

▶ P̃ν
pn
(Id, Id) ≤ 1

|H̃pn |
+ 1

2

√
|H̃pn |

(
1− 1

4k2|H̃pn |2

)ν

▶ P̃ν
pn
(Id, Id) ≤ 1

log2 n + 1
2

√
(log n)5d2 exp

(
n

8k2(log n)10d2

)
▶ that is O(log−2 n)

▶ If n = 2ν + 1, Pn
pn
(Id, Id) =

∑
h∈Hpn

P̃ν
pn
(Id, h)Ppn(h, Id)

▶ The second factor is non-zero for h = Bpn where B ∈ Σ̃: 2k
values, all equal to 1

2k
▶ so again O(log−2 n).

– The probability that M(w)q(n) = Id is O(log−2 n) –

▶ We want to show that Pn(M(w)q(n) = Id) is O(log−2 n)
▶ Pn

q(n)(Id, Id) ≤ Pn
pn
(Id, Id).

▶ if n = 2ν, Pn
pn
(Id, Id) = P̃ν

pn
(Id, Id)

▶ P̃ν
pn
(Id, Id) ≤ 1

|H̃pn |
+ 1

2

√
|H̃pn |

(
1− 1

4k2|H̃pn |2

)ν

▶ P̃ν
pn
(Id, Id) ≤ 1

log2 n + 1
2

√
(log n)5d2 exp

(
n

8k2(log n)10d2

)
▶ that is O(log−2 n)

▶ If n = 2ν + 1, Pn
pn
(Id, Id) =

∑
h∈Hpn

P̃ν
pn
(Id, h)Ppn(h, Id)

▶ The second factor is non-zero for h = Bpn where B ∈ Σ̃: 2k
values, all equal to 1

2k
▶ so again O(log−2 n).

– The probability that M(w)q(n) = Id is O(log−2 n) –

▶ We want to show that Pn(M(w)q(n) = Id) is O(log−2 n)
▶ Pn

q(n)(Id, Id) ≤ Pn
pn
(Id, Id).

▶ if n = 2ν, Pn
pn
(Id, Id) = P̃ν

pn
(Id, Id)

▶ P̃ν
pn
(Id, Id) ≤ 1

|H̃pn |
+ 1

2

√
|H̃pn |

(
1− 1

4k2|H̃pn |2

)ν

▶ P̃ν
pn
(Id, Id) ≤ 1

log2 n + 1
2

√
(log n)5d2 exp

(
n

8k2(log n)10d2

)

▶ that is O(log−2 n)

▶ If n = 2ν + 1, Pn
pn
(Id, Id) =

∑
h∈Hpn

P̃ν
pn
(Id, h)Ppn(h, Id)

▶ The second factor is non-zero for h = Bpn where B ∈ Σ̃: 2k
values, all equal to 1

2k
▶ so again O(log−2 n).

– The probability that M(w)q(n) = Id is O(log−2 n) –

▶ We want to show that Pn(M(w)q(n) = Id) is O(log−2 n)
▶ Pn

q(n)(Id, Id) ≤ Pn
pn
(Id, Id).

▶ if n = 2ν, Pn
pn
(Id, Id) = P̃ν

pn
(Id, Id)

▶ P̃ν
pn
(Id, Id) ≤ 1

|H̃pn |
+ 1

2

√
|H̃pn |

(
1− 1

4k2|H̃pn |2

)ν

▶ P̃ν
pn
(Id, Id) ≤ 1

log2 n + 1
2

√
(log n)5d2 exp

(
n

8k2(log n)10d2

)
▶ that is O(log−2 n)

▶ If n = 2ν + 1, Pn
pn
(Id, Id) =

∑
h∈Hpn

P̃ν
pn
(Id, h)Ppn(h, Id)

▶ The second factor is non-zero for h = Bpn where B ∈ Σ̃: 2k
values, all equal to 1

2k
▶ so again O(log−2 n).

– The probability that M(w)q(n) = Id is O(log−2 n) –

▶ We want to show that Pn(M(w)q(n) = Id) is O(log−2 n)
▶ Pn

q(n)(Id, Id) ≤ Pn
pn
(Id, Id).

▶ if n = 2ν, Pn
pn
(Id, Id) = P̃ν

pn
(Id, Id)

▶ P̃ν
pn
(Id, Id) ≤ 1

|H̃pn |
+ 1

2

√
|H̃pn |

(
1− 1

4k2|H̃pn |2

)ν

▶ P̃ν
pn
(Id, Id) ≤ 1

log2 n + 1
2

√
(log n)5d2 exp

(
n

8k2(log n)10d2

)
▶ that is O(log−2 n)

▶ If n = 2ν + 1, Pn
pn
(Id, Id) =

∑
h∈Hpn

P̃ν
pn
(Id, h)Ppn(h, Id)

▶ The second factor is non-zero for h = Bpn where B ∈ Σ̃: 2k
values, all equal to 1

2k
▶ so again O(log−2 n).

– The probability that M(w)q(n) = Id is O(log−2 n) –

▶ We want to show that Pn(M(w)q(n) = Id) is O(log−2 n)
▶ Pn

q(n)(Id, Id) ≤ Pn
pn
(Id, Id).

▶ if n = 2ν, Pn
pn
(Id, Id) = P̃ν

pn
(Id, Id)

▶ P̃ν
pn
(Id, Id) ≤ 1

|H̃pn |
+ 1

2

√
|H̃pn |

(
1− 1

4k2|H̃pn |2

)ν

▶ P̃ν
pn
(Id, Id) ≤ 1

log2 n + 1
2

√
(log n)5d2 exp

(
n

8k2(log n)10d2

)
▶ that is O(log−2 n)

▶ If n = 2ν + 1, Pn
pn
(Id, Id) =

∑
h∈Hpn

P̃ν
pn
(Id, h)Ppn(h, Id)

▶ The second factor is non-zero for h = Bpn where B ∈ Σ̃: 2k
values, all equal to 1

2k

▶ so again O(log−2 n).

– The probability that M(w)q(n) = Id is O(log−2 n) –

▶ We want to show that Pn(M(w)q(n) = Id) is O(log−2 n)
▶ Pn

q(n)(Id, Id) ≤ Pn
pn
(Id, Id).

▶ if n = 2ν, Pn
pn
(Id, Id) = P̃ν

pn
(Id, Id)

▶ P̃ν
pn
(Id, Id) ≤ 1

|H̃pn |
+ 1

2

√
|H̃pn |

(
1− 1

4k2|H̃pn |2

)ν

▶ P̃ν
pn
(Id, Id) ≤ 1

log2 n + 1
2

√
(log n)5d2 exp

(
n

8k2(log n)10d2

)
▶ that is O(log−2 n)

▶ If n = 2ν + 1, Pn
pn
(Id, Id) =

∑
h∈Hpn

P̃ν
pn
(Id, h)Ppn(h, Id)

▶ The second factor is non-zero for h = Bpn where B ∈ Σ̃: 2k
values, all equal to 1

2k
▶ so again O(log−2 n).

– Open problems –

▶ The algorithm QuickWP solve the Word Problem in the
subgroups of GL(Z) with a linear bit complexity in average for
the uniform distribution on words of a given length.

▶ A reduced word is a word that contains neither AA−1 nor A−1A
as factor.

▶ What is the average-case complexity of the Word Problem for
the uniform distribution on reduced words of a given length?

▶ What is the average-case complexity of the Word Problem in the
subgroups of GL(Q)?

– Open problems –

▶ The algorithm QuickWP solve the Word Problem in the
subgroups of GL(Z) with a linear bit complexity in average for
the uniform distribution on words of a given length.

▶ A reduced word is a word that contains neither AA−1 nor A−1A
as factor.

▶ What is the average-case complexity of the Word Problem for
the uniform distribution on reduced words of a given length?

▶ What is the average-case complexity of the Word Problem in the
subgroups of GL(Q)?

– Open problems –

▶ The algorithm QuickWP solve the Word Problem in the
subgroups of GL(Z) with a linear bit complexity in average for
the uniform distribution on words of a given length.

▶ A reduced word is a word that contains neither AA−1 nor A−1A
as factor.

▶ What is the average-case complexity of the Word Problem for
the uniform distribution on reduced words of a given length?

▶ What is the average-case complexity of the Word Problem in the
subgroups of GL(Q)?

– Open problems –

▶ The algorithm QuickWP solve the Word Problem in the
subgroups of GL(Z) with a linear bit complexity in average for
the uniform distribution on words of a given length.

▶ A reduced word is a word that contains neither AA−1 nor A−1A
as factor.

▶ What is the average-case complexity of the Word Problem for
the uniform distribution on reduced words of a given length?

▶ What is the average-case complexity of the Word Problem in the
subgroups of GL(Q)?

Thank you for your attention!

