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» The word problem is the problem of deciding whether two given
expressions are equivalent with respect to a set of rewriting
identities (e.g, a set of relators).

» This problem is mainly studied in (semi)group theory.

The Word Problem in groups (Dehn 1911)

Let X be a finite subset of a group G, is it decidable whether a finite
word won X = ¥ U ¥ ~! evaluates to 1 in G?

» This problem is not decidable in general even for finitely
presented groups (Novikov 1955, Boone 1959).
> It is decidable for automatic groups inluding finite, free,

hyperbolic or braid groups (Epstein ef al. 1992); 1-relator groups
(Magnus, Karass and Solitar 1966)...



— The Word Problem in GL;(Z) -

» Let GL,(Z) be the set of d x d invertible matrices with
coefficients in Z. The integer d is fixed.



— The Word Problem in GL;(Z) -

» Let GL,(Z) be the set of d x d invertible matrices with
coefficients in Z. The integer d is fixed.

> Let X be a nonempty finite subset of GL,(Z).



— The Word Problem in GL;(Z) -

» Let GL,(Z) be the set of d x d invertible matrices with
coefficients in Z. The integer d is fixed.

> Let X be a nonempty finite subset of GL,(Z).

The Word Problem in the subgroup generated by X

Given a finite word w on 3 = S U X1, is the (matrix) evaluation
M(w) of w in GL4(Z) equal Id ?



— The Word Problem in GL;(Z) -

» Let GL,(Z) be the set of d x d invertible matrices with
coefficients in Z. The integer d is fixed.

> Let X be a nonempty finite subset of GL,(Z).

The Word Problem in the subgroup generated by X

Given a finite word w on 3 = S U X1, is the (matrix) evaluation
M(w) of w in GL4(Z) equal Id ?

» This problem is of course decidable in GL4(Z).



— The Word Problem in GL;(Z) -

» Let GL,(Z) be the set of d x d invertible matrices with
coefficients in Z. The integer d is fixed.

> Let X be a nonempty finite subset of GL,(Z).

The Word Problem in the subgroup generated by X

Given a finite word w on 3 = S U X1, is the (matrix) evaluation
M(w) of w in GL4(Z) equal Id ?

» This problem is of course decidable in GL4(Z).

P> But what is its complexity?
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— Bit complexity —

Bit complexity

The bit complexity is the number of operations on bits that are needed
for running an algorithm.

» Integers are identified with their binary expansion.
» The bit size £(m) of mis [log(|m| + 1)] + 1 (with the sign).

» Coefficients of M(w) grow at most exponentially in |w| — their
bit sizes grow at most linearly in |w|.

Theorem (Harvey and van der Hoeven 2021)

If {(p), ¢(q) < L, then pq is computed in O(LlogL).
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Naive algorithm

Ifw=a;...a,(eacha; € f))
» Compute the n — 1 products wo = Id, w1 = wiaitq, ...,
wn, = M(w),
» Check whether M(w) is Id.

» In the worst case:

» The length of the coefficients in M(w) grows linearly in n = |w|.
» The cost of each multiplication is O(nlogn).

» This algorithm computes M(w) in O(n? log n).

» Checking whether M(w) is Id is done in constant time.

» The complexity of this naive algorithm is in O(n* log n).
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Algorithm 2: Algorithm DCy,

Input : asequence w of n elements of )
Output: M(w)

1 ifn =0 (resp. n = 1) then

2 L return |d (resp. M(w))

3 wy < prefix of w of length [n/2]

4 wy « suffix of w of length [n/2]
5 return DCx(w;) x DCx(wy)

The worst-case complexity C(n) satisfies the functional equation:
C(n) = C(|5]) + C([5]) + cost-of-multiplying(M(w;)M(w>)).
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The Master Theorem

Suppose C(n) satisfies C(n) = C([5]) + C([5]) +f(n).
> Iff(n) = O(n") for some h < 1, then C(n) = O(n).
> If f(n) = O(nlog" n) for h > 0, then C(n) = O(nlog" ' n).

» The length of the coefficients in M(w) grows linearly in n = |w|.
» The cost of multiplying M(w) - M(w») is O(nlogn).

Worst case bit complexity (Olshanskii and Shpilrain 2025)

DCy; has worst case bit complexity O(nlog? n).
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— Special cases with linear worst-case complexity —

» If H = () is finite
» the lengths of the coefficients of the matrices of H are bounded,
» the multiplication M(w;) - M(w3) costs O(1),
» DCsy has linear complexity.
P If 3 contains only upper-triangular matrices,
> the (i, j)-coefficients grow polynomially in n (in O(# ")),
» 5o their lengths grow logarithmically in n,
» DCy has linear complexity.
> Application to the Word Problem in finitely generated nilpotent
groups (Olshanskii and Shpilrain 2025).
» The same algorithm in GL;(Z/mZ) computes the mod m
projection of M(w), written M(w),,.
> If mis fixed, multiplication M(wy),, - M(w),, costs O(1),
» DC,, computes M(w),, in linear time.
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— Towards an algorithm with O(n) average-case complexity —

> A natural idea:
» Compute M(w) modulo g.
> If M(w), # Id, then M(w) # Id;
else run Algorithm DC on w.
» For a fixed g, the probability of M(w), = |d may tend to a
constant, so the average-case complexity is still O(n log? n).

» So: take ¢ = g(n), a function of the length of w.
» Arithmetic operations in Z/q(n)Z cost O(log q(n) loglog g(n)).

» The function g(n) must grow

> sufficiently slow, so M(w) () is computed quickly, and
multiplication mod ¢(n) is fast
» and sufficiently fast, so the probability that M(w),(,) = Id is low.



— Main result : Algorithm QuickWP -

Algorithm 3: Algorithm Quick WP

Input : asequence w of n elements of Y
Output: True if M(w) = Id, and False otherwise

1 Compute g(n) = [] p where p runs over prime numbers < log® n.
2

3 if DCy, ,, (W) # Id then
4 ‘ return False

5 else

6 if DCx(w) # Id then
7 ‘ return False

8 else

9 L return True
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— Main result : Algorithm QuickWP -

Algorithm 4: Algorithm QuickWP

Input : asequence w of n elements of Y
Output: True if M(w) = Id, and False otherwise
Compute ¢(n) = [] p where p runs over prime numbers < log> .

if DCy. (1 (w) # Id then
‘ return False
else
if DCx(w) # Id then
‘ return False
else
L return True

Theorem (Bassino, Nicaud and Weil 2025)

For uniform distribution over words of given length over 3, Quick WP
solves the word problem with linear bit complexity in average.
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— Remarks on the main result —

Algorithm QuickWP makes no assumption on the algebraic or
combinatorial properties of ¥ or the subgroup H = (¥).

The same algorithm is run, with linear average-case complexity,
whether Y. consists of triangular matrices or not, and whether H
is finite or infinite.

The latter property is decidable (Jacob 1978) in polynomial time
(Babai, Beals and Rockmore 1993).

The same algorithm is run, with the same average-case
complexity whether H has polynomial or exponential growth, or
whether it is nilpotent, polycyclic or virtually solvable.

In the latter two situations, there is a linear average-case

complexity for the Word Problem, using the properties of these
subgroups (Olshanskii and Shpilrain 2025).
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Since S
gn)= J] p < log’="n,

p < log’n
p prime

¢(q(n)) = polylog(n), g(n) is computed in polylog(n) and the
computations in Z/q(n)Z take polylog(n) time.

By the Master Theorem, DCy; () runs in O(n) time.

As a result, the average-case complexity of QuUickWP is

@) (n + P, n log® n)

where P, is the probability that M(w)(,) = Id.
If H = () is finite, QUICKWP runs in linear time.
We need to show that, if H is infinite, then P, = O(log™2n).
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— Random words and Markov chain —

> We want to show that P,(M(w) 4,y = 1d) is O(log™2n).

> |X| =k H=(X), m > 2, H, = projection mod m of H.

> Assumptions: XN Y. ~! = (), and m sufficiently large: distinct
elements of X are distinct mod m.

» The matrices M(w),, are produced by the length n trajectories in
the Markov chain {l,, such that:
» The state set of i, is the subgroup H,,.
» There is an edge M i M’ if and only if A € ¥ such that
MA=M.
» The initial vector assigns 1 to Id and O to the other states.
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— Properties of 1, —

Let P,, be the matrix of transition of L(,,.

» Since P,, is symmetric, the uniform distribution is a stationnary
distribution of ,,,.

» Since P, is irreducible, it is the only stationnary distribution.

> But P,, maybe not aperiodic : as there are length 2 circuits in 4(,,,
the period is 1 or 2.
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— A symmetric primitive Markov chain -

{12 is symmetric and aperiodic, but maybe not irreducible: let
H,, be the set of states accessible from Id in {2,.

if £, has period 2, then L2, splits its state set H,, into two
disjoint Markov chains — one on H,, and one on the states at
odd distance from Id.

H,, = (X?) is equal to H,, or to an index 2 subgroup of H,:
[l = 5|Hinl-

flm = the restriction of i, to Hm, with transition matrix 13m.
Then &L, is primitive and symmetric, and for any distribution g,

MPZ converges to the uniform distribution (\Hlj) .
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— The rate of convergence —

Rate of convergence

The distribution P’ (Id, -), reached after n random steps starting at Id

satisfies
_ 1 1 /= 1 "
Pr(ld,-) — —= §\/|H|(1—~> .
‘ " Hp| [y =2V 42| Hy|*

» The proof uses results on the second largest and on the least
eigenvalues of P,, (Diaconis and Stroock 1991).

» Now let’s go back to computations mod m = g(n) and evaluate
‘I:Iq(n) ‘ g
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— An element of H of large order —

Order of an element

The order of an element A of a group is |(A)|. It is the smallest
positive integer ¢ such that A* = Id.

» An infinite subgroup of GL;(Z) always contains a matrix of
infinite order (Schur 1911). So H = (X) contains a matrix A
with infinite order.

An element of at least logarithmic order

Let A € GL4(Z) with infinite order. If n is large enough, g(n) has a
prime factor p such that A, has order > 2 log? .

» Let A € GLy(Z) of infinite order. The number of primes p such
that A, has order < L is O(L?) (Kurberg, 2003).

» There are O(log* 1) primes p such that A has order < 2 log? n,

and g(n) is the product of the primes < log® n — of which there
1 5
5 lc?gglong n’

are, asymptotically, ~
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— An element of H of large order —

An element of at least logarithmic order

Let A € GL4(Z) with infinite order. If n is large enough, g(n) has a
prime factor p such that A, has order > 2 log? n.

> Let p, < log> n be a prime such that A, has order > 2 log? n.
> NB: We are not concerned with the value of the matrix A or the
prime p,, nor with how hard it would be to compute them.

» Then \I:Ipn] > 5|Hp,| > %|<Apn> > log2 n.
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— An element of H of large order —

An element of at least logarithmic order

Let A € GL4(Z) with infinite order. If n is large enough, g(n) has a
prime factor p such that A, has order > 2 log? n.

> Let p, < log> n be a prime such that A, has order > 2 log? n.

> NB: We are not concerned with the value of the matrix A or the
prime p,, nor with how hard it would be to compute them.

> Then ‘I:Ipn’ 2 %’Hpn‘ Z %|<Apn>
> Also: |H,,| <pd < log3” n.

> log? n.
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> We want to show that P,(M(w) .y = Id) is O(log=2n)
> Py, (Id,1d) < P (Id, Id).
> if n =2v, P2 (Id,I1d) = P¥ (Id, Id)

> Py (1d,1d) < 7+ /1, (1 ;)

|y, | 42| Hy, [2




— The probability that M(w),(,) = Id is O(log > n) -

> We want to show that P,(M(w) .y = Id) is O(log™2n)
> P, (1d,1d) < P2, (1d, 1d).
> if n =2v, P2 (Id,I1d) = P¥ (Id, Id)

> By (d,1d) < 7+ 31| (1- )

> P2 (1d,1d) < -+ 4 /(logn)™® exp (m)




— The probability that M(w),(,) = Id is O(log > n) -

> We want to show that P,(M(w) .y = Id) is O(log=2n)
> P, (1d,1d) < P2, (1d, 1d).
> if n =2v, P2 (Id,I1d) = P¥ (Id, Id)

> By (1d,1d) < g+ 4 y/1E,| (1 - b))

> P (Id,Id) < ol + £ /(logn)™® exp(

> thatis O(log ™ n)

__n
8k2 (log n) 104> )
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> We want to show that P,(M(w) .y = Id) is O(log=2n)

> P (1d,1d) < P2 (Id,Id).

> ifn=2v, P (Id Id) =P P, (Id,1d

)
W] (—

Vo exp ()

> 13” (Id,Id)
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— The probability that M(w),(,) = Id is O(log > n) -

> We want to show that P,(M(w) .y = Id) is O(log=2n)
> Py, (ld,1d) < P (Id, Id).
> ifn =2v, Pt (Id Id) =Py (Id,Id

)
W] (—

Vo exp ()

> 13” (Id,Id)
> P;x(ld,ld) < ToaTr
> thatis O(log ™ n)
> Ifn=2v+1,P; (Id,1d) = ZheH,,, pn(ld h)P,, (h,1d)

» The second factor is non-zero for 7 = B, where B € > 2k
values, all equal to 5

_l’_
_l’_

> 50 again O(log~* n).
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— Open problems -

The algorithm QuickWP solve the Word Problem in the
subgroups of GL(7Z) with a linear bit complexity in average for
the uniform distribution on words of a given length.

A reduced word is a word that contains neither AA~! nor A='A
as factor.

What is the average-case complexity of the Word Problem for
the uniform distribution on reduced words of a given length?

What is the average-case complexity of the Word Problem in the
subgroups of GL(Q)?



Thank you for your attention!



